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Summary of Data Analysis and Fathon Algorithm 

•Data analysis: The local Hurst exponent H(t) was computed for three 
triaxial seismometers monitoring the KAGRA central room and the two 
end buildings of the interferometer, to quantify data persistency. 

•Algorithm: The analysis was carried out using fathon, an open source 
software for fast fractal analysis in Python (Stefano Bianchi, PhD)

•Reference: S. Bianchi, “fathon: A Python package for a fast computation 
of detrended fluctuation analysis and related algorithms,” Journal of 
Open Source Software, vol. 5, no. 45, p. 1828, 2020.  

• https://pypi.org/project/fathon/ 
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Hurst Exponent to Quantify Time Series Persistency

• H: quantify time series persistency (speed of oscillations around the mean)

• Spectra of power law process                             

• β “spectral index” ( β = 0 -> flat spectra -> white noise)

• Relation with spectral index

P( f ) ∼ f −β

H =
β + 1

2
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• Red noise: H=1.5, (β=2)

• Pink noise: H=1, (β=1)

• White noise: H=0.5, (β=0)
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1. Detrended Fluctuation Analysis (DFA) 
• Figure adapted from: Quantification of scaling exponents 

and crossover phenomena in nonstationary heartbeat 
time series,” Chaos: An Interdisciplinary Journal of 
Nonlin- ear Science, vol. 5, no. 1, pp. 82–87, 1995 

In this Figure 

• n=100 (window length), N=1000 (data length)

• Ntot=10 (number of windows)

• s=1…10 (window index)

• A linear fit               is subtracted

• Output of the DFA algorithm is the Hurst exponent H

• DFA: applied to random walk like time series Y(t), where t = 1...N. If data are instead noise like 
x(t), mean subtraction and integration is carried out first 

• Y(t) is divided into                       non-overlapping windows of length n. 

• Data in each window                        is fitted with a least squares line 

Y(t) =
t

∑
t′�=1

(x(t′�) − x̄)

Yfit
s

Ntot = N/n

s = 1...Ntot

Yfit
s



2. Detrended Fluctuation Analysis (DFA)

•  RMS(n,s) computed in each window

 

for 

• Scaling function F(n): average of squared RMS obtained for the time intervals of length n

• Compute F(n) for different values of n -> power law relation with window size n 

      -> The exponent is the Hurst exponent: 

• H estimation: slope of log(F(n)) vs log(n)

RMS(n, s) =
1
n

n

∑
i=1

[Y((s − 1)n + i) − Yfit
s (i)]2

F(n) ∼ nH
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F(n) = [ 1
Ntot

Ntot

∑
s=1

RMS2(n, s)]
1/2

s = 1...Ntot



Fathon Algorithm Testing: H for Coloured Noises
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• Red noise:    H=1.5

• Pink noise:   H=1

• White noise: H=0.5

• H of coloured noises correctly estimated 
from slope of log(F(n)) vs log(n)

• Red noise:    H=1.444

• Pink noise:   H=0.972

• White noise: H=0.492

DFA Output



Local Hurst Exponent H(t)

• Similar to DFA, but time series divided into small overlapping windows of 
length δ

 

• Small overlapping windows -> fluctuations quantified “locally” as a function 
of time

• RMS is computed in each small window length δ 

• H(t) values: slope of the straight lines connecting the RMS values, 
computed in each small window, to the value of F(N) 

• Full details in -> LINK to Ihlen paper 
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Fathon Algorithm Testing: H(t) for Coloured Noises
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• Red noise:    H=1.5

• Pink noise:   H=1

• White noise: H=0.5

• H(t) of coloured noises 
correctly estimated. 

• Small windows of δ=50 used 
for testing



KAGRA Triaxial Seismometers Data Analysis
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Persistency of KAGRA Seismometers 

• Example: 4s from IXV seismometer, monitoring the corner area of KAGRA. Fsampl=256Hz

• Triaxial Seismometer: EW, NS (horizontal), UD (vertical) 

• UD has lower persistency compared to EW and NS -> lower values of H

�11



Average ASD of KAGRA seismometer data

• Analysed data 31/7/2019 - 19/6/2020 
(100 non consecutive hours) 

Average ASD

• Vertical component (yellow) -> Lower 
ASD in low frequency region for three 
seismometers

• EXV horizontal components (red blue): 
Lower ASD in the low frequency region 
compared to EYV and IXV
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Histograms of Local Hurst Exponent H(t)

• Vertical components -> lower H for the three seismometers

• EXV horizontal components -> lower H compared to EYV and IXV

• Data analysis parameters: window length δ = 500, linear detrend        in each window Yfit
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Conclusions
• The local Hurst exponent H(t) was computed for three triaxial seismometers monitoring KAGRA

• Vertical component of three seismometers has lower persistency -> lower H

• Seismometer EXV (horizontal components) -> lower H compared to EYV and IXV seismometers

• Possible explanation: reduced influence of human activity in X end area (no exit point), different from 
EYV and IXV

• Water flow inside the mine where KAGRA is located? Further analysis needed, using other environmental 
noise data

• H(t) can monitor over time the persistency of interferometer’s data. Useful to monitor stability?

• Fathon code available online: https://pypi.org/project/fathon/

• Fathon Contacts: alessandro.longo@uniroma3.it wolfango.plastino@uniroma3.itstefano.bianchi@uniroma3.it
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EXTRA SLIDES

Applications to Virgo Data
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Local Hurst Exponent of Virgo Seismometer in NEB

• H(t) tracks change of 
persistency in Virgo 
seismometer

• Small windows of 
δ=10

• Seismic noise in Virgo seismometer due to acoustic noise injection performed in 
North End Building -> change in data persistency can be monitored with high 
resolution using H(t) 

Alessandro Longo, Stefano Bianchi, Wolfango Plastino et al. Adaptive denoising of acoustic noise injections performed at Virgo 
Interferometer. Pure and Applied Geophysics 177, 3395–3406, 2020. 
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Persistency of Seismometer Array in Virgo West End Building

• Left: Coordinates of seismometer array            Right: Average Hurst of seismometer array

- Red: Sensors not on concrete platform hosting Superattenuator tower.
- Blue: Sensors on the concrete platform

• Seismic noise in WEB has different persistency depending on sensor location

Alessandro Longo, Stefano Bianchi, Wolfango Plastino, Bartosz Idzkowski, Maciej Suchinski and Tomasz Bulik, Fractal analysis 
of data from seismometer array monitoring Virgo Interferometer. Pure and Applied Geophysics 177, 2597-2603, 2020. 
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