ダクトシールドからの入熱

理学系研究科物理学専攻 修士2年 35-106033 榊原裕介

2011年9月28日

図 1: 表 1 の (*) の場合の模式図

図1のように、位置 x にあるバッフルの開口径 2d を

$$d = d_r + \frac{x}{\tau}(d_c - d_r) \tag{1}$$

とする。これを用いて、バッフル位置と開口径の関係をまとめると表 4 のようになる。ただし L = 17 m、常温側開口径 $2d_r = 800$ mm、低温側開口径 $2d_c = 250$ mm、ダクトシールド壁面およびバッフル表面の反射率 R = 0.94 とした。(ただし、表 1 の (*) の場合は、バッフルの常温側の反射率は DLC コーティングを想定し 0.59、ダクト シールド壁面およびバッフルの低温側の反射率は 0.94 のままとした。)

x = 0, 13, 17 mに 3 枚バッフルを固定した。そして、バッフル枚数が 3,4,5,6,7 枚のそれぞれの場合に、バッフル 位置を 1 m ごとに動かし、入熱 P が最も少ない配置を求めると表 1 のようになった。ただしビームダクト (SUS、 常温)の熱放射率 $\epsilon = 0.1$ 、常温側開口の面積 $A = \pi d_r^2$ を用いると常温側開口から放射される全放射量は

$$P_0 = \epsilon \sigma T^4 A = 23.1 \text{ W} \tag{2}$$

である。このうち、表1の(*)の場合を図示すると図1のようになる。

さらに、表1の(*)、(*)の場合の、常温部開口から入りシールド・バッフルに吸収される熱放射の位置分布は図2のようになる。

x[m]	P/P_0	P[W]
0,13,17	0.0402	0.928
0,11,13,17	0.0248	0.573
0,6,12,13,17	0.0126	0.290
0,6,12,13,16,17	0.00745	0.172
0,5,10,11,12,13,17 (*)	0.00449	0.104
0,5,9,10,12,13,17		
(常温側反射率 0.59、*)	0.00281	0.0650

	熱量 [W]
低温側に入射	0.104
常温側に反射	4.04
壁面 1(13 m)	18.0
壁面 2(4 m)	0.155
バッフル 0 m	0.00184
バッフル 5 m	0.255
バッフル 10 m	0.287
バッフル 11 m	0.124
バッフル 12 m	0.0826
バッフル 13 m	0.0410
バッフル 17 m	0.00728
計 (P ₀)	23.1

	熱量 [W]
低温側に入射	0.0650
常温側に反射	2.48
壁面 1(13 m)	16.4
壁面 2(4 m)	0.103
バッフル 0 m	9.66×10^{-5}
バッフル 5 m	1.40
バッフル 9 m	1.13
バッフル 10 m	0.976
バッフル 12 m	0.359
バッフル 13 m	0.176
バッフル 17 m	0.0335
	23.1

表 1: バッフルの配置と入熱量

表 2: 常温側開口からの全入熱 *P*₀ 表 3: 常温側開口からの全入熱 *P*₀ の行き先:表 1 の (*) の場合の行き先:表 1 の (*) の場合

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
800	768	735	703	671	638	606	574	541	509	476	444	412	379	347	315	282	250

表 4: バッフル位置(上段、m)と開口径(下段、mm)の関係

図 2: 常温部開口から入りシールド・バッフルに吸収される熱放射の位置分布(赤:(*)、緑:(*))