GAS filter improvement for post O4.

For respond to 40 kg payload increasing.

H. Ishizaki. and R. Takahashi.

VIS meeting 28 Aug. 2020

GAS filter modification plan for 40kg test mass

R. Takahashi 20 Nov 2019 rev.2

Madification of	Test mass 23kg → 40kg	MAXMININA SIMINANA
GAS Filter for 40kg TM	Blade in GAS filter Blade thickness: 2.4mm (from yield limit) Load capacity: 40kg/blade Maximum number of blade: 12	
	Body design Closed cup → Open frame Keep rigidity to avoid deformation Reduced body mass	¢730
	Function Fishing rod with strong spring	
40kg TM のための GAS Filter の改 造	Magic wand (for SF) Connector anchor Moving mass and primary coil (for BF)	

Original body	New body	Reduction	Blade capacity	Original #blade	New #blade	Load capacity	Total load
[ka]	[ka]	[ka]	[ka/blade]			[ka]	[ka]

3/10

Mass Budget

	Original body	New body	Reduction	Blade capacity	Original #blade	New #blade	Load capacity	Total load
	[kg]	[kg]	[kg]	[kg/blade]			[kg]	[kg]
Top filter				115	6	6	690	566
Filter 1	100	90	-10.0	40	12	12	480	476
Filter 2	86	76	-10.0	40	10	10	400	400
Filter 3	83	73	-12.6	40	8	10	400	327
Bottom filter	105	87	-19.3	40	5	6	240	240
Payload	200	240	+40.0					

	Original body	Original base	Original cup	Blade block	Original #blade	All blade	base+cup+blade	Ballast
	[kg]	[kg]	[kg]	[kg]		[kg]	[kg]	[kg]
Top filter					6			
Filter 1	100	27.0	40.2	1.3	12	15.6	82.8	
Filter 2	86	27.0	40.2	1.3	10	13.0	80.2	0~+6
Filter 3	83	27.0	40.2	1.3	8	10.4	77.6	-3~+6
Bottom filter	105	40.5	38.3	1.3	5	6.5	85.3	-3~+5
Payload	200							

Instruction of Takahashi-san.

• Critical stress of the Blades

Improvement Plan

• Base Plate Material

Carbon Fiber Reinforced Plastic : CFRP 炭素繊維強化プラスチック

Models	F1	F2	F3			
	12 sheets	10 sheets	8 sheets			
	displacement					
	0.636 mm	$0.556 \mathrm{~mm}$	$0.478 \mathrm{~mm}$			
A	$0.235 \mathrm{~mm}$	_	_			
В	0.237 mm	$0.212 \mathrm{~mm}$	0.188 mm			
	0.090 mm	—	—			
С	$0.592 \mathrm{mm}$	$0.518 \mathrm{~mm}$	$0.445 \mathrm{~mm}$			
	$0.219 \mathrm{mm}$	—	—			

Materials	$ ho \ {\rm kg \ m^{-3}}$	E GPa	σ MPa
MS1C	8.0×10^3	186	$\sigma_{\rm Y} = 1890$
SUS304	8.0	197	$\sigma_{\rm Y} = 520$
CFRP	1.94	588	$\sigma_{\rm B} = 3820$

Out Gas

TML (Total Mass Loss: 質量損失比%) = 0.31~0.49%

CVCM (Collected Volatile Condensable Materials: 再凝縮物質量比%) = 0.00~0.01%

10/10

summary

- The improvement of the GAS filter corresponding to the increase in payload mass of 40 kg was examined.
- Current blades are designed also to fit the Buckling theory.
- We evaluated the rigidity of the base plate and defined an index for estimating improvement.
- If the base plate is changed to CFRP, the rigidity and weight reducing will be significantly improved and the degree of freedom in designing other parts will be increased.

ΟĿ

ε