GAS filter improvement for post O4.

For respond to 40 kg payload increasing.

H. Ishizaki. and R. Takahashi.

VIS meeting 28 Aug. 2020

GAS filter modification plan for 40kg test mass

R. Takahashi 20 Nov 2019 rev.2

Modification of GAS Filter for 40kg TM

Test mass

 $23kg \rightarrow 40kg$

Blade in GAS filter

Blade thickness: 2.4mm (from yield limit)

Load capacity: 40kg/blade Maximum number of blade: 12

Body design

Closed cup → Open frame Keep rigidity to avoid deformation Reduced body mass

Function

Fishing rod with strong spring

Magic wand (for SF) Connector anchor

Moving mass and primary coil (for BF)

40kg TM**のための** GAS Filter**の**改造

Mass Budget

	Original body	New body	Reduction	Blade capacity	Original #blade	New #blade	Load capacity	Total load
	[kg]	[kg]	[kg]	[kg/blade]			[kg]	[kg]
Top filter				115	6	6	690	566
Filter 1	100	90	-10.0	40	12	12	480	476
Filter 2	86	76	-10.0	40	10	10	400	400
Filter 3	83	73	-12.6	40	8	10	400	327
Bottom filter	105	87	-19.3	40	5	6	240	240
Payload	200	240	+40.0					

	Original body	Original base	Original cup	Blade block	Original #blade	All blade	base+cup+blade	Ballast
	[kg]	[kg]	[kg]	[kg]		[kg]	[kg]	[kg]
Top filter					6			
Filter 1	100	27.0	40.2	1.3	12	15.6	82.8	
Filter 2	86	27.0	40.2	1.3	10	13.0	80.2	0~+6
Filter 3	83	27.0	40.2	1.3	8	10.4	77.6	-3 ~ +6
Bottom filter	105	40.5	38.3	1.3	5	6.5	85.3	-3 ~ +5
Payload	200							

Instruction of Takahashi-san.

• Considering multiple models.

現KAGRAの場合 (完全クローズ)

清水案の場合(側面オープン)

Current KAGRA (Completely closed)

Shimizu's proposal (Side wall open)

TAMA-SASの場合 (下オープン)

TAMA SAS (Open bottom)

Modify the Base Plate

On hold

<u>Ishizaki's response</u>

Did not adopted

Rigidity is difficult to secure due to open cross-section structure

Current Structure Survey

• Blade (Yielding)

Young's Module: E Pa

Moment of Inertia of Area : $I = \frac{bh^3}{12}$ m⁴

Critical Load : $P_{\text{Cr}} = \frac{\pi^2}{4} \frac{EI}{I^2}$ N

Critical stress: $\sigma_{\rm Cr} = \frac{P_{\rm Cr}}{4} = \frac{\pi^2}{4} \frac{E}{\lambda^2}$

Cross sectional area : A = bh m²

Slenderness ratio : $\lambda = \frac{\iota}{k}$

Radius of gyration of area : $k = \left| \frac{I}{A} \right|$ m

Buckling Theory

$$k = \sqrt{\frac{bh^3/12}{bh}} = \frac{h}{\sqrt{12}}, \qquad \therefore \lambda = \sqrt{12} \frac{l}{h}$$

$$P_{\text{Cr}} = \frac{\pi^2}{4} \frac{E}{\lambda^2} \overline{A}, \qquad \overline{A} = \frac{\int_0^l b(s)hds}{l}.$$

Maraging steel: E = 186 GPa $\sigma_{\text{Y}} = \sigma_{\text{c}} = 24.9 \text{ MPa}$

Numerical evaluation

各 blade の load を計算した結果

	l mm	h mm	λ	$\sigma_{\rm cr}$ MPa	$\sigma_{ m cr}/\sigma_{ m Y}$
TF	606	5.0	419.8	2.60	0.104
SF	274	2.4	395.5	2.93	0.118
BF	274	2.4	395.5	2.93	0.118

Top filter: 982.35 N = 100.24 kgw

Standard filter: 398.26 N = 40.64 kgw

Bottom filter: 398.08 N = 40.62 kgw

Blade wedge curve fitting

Critical stress of the Blades

Rigidity of Base Plate

 $P = \sqrt{2} \cdot 398.26 = 563.22 = 563 \text{ N},$

M = 5.632 Nm

M' = 18.150 Nm

- ノード:825359 - 要素:498887 - タイプ: 変位		
単位: mm 2020/08/24, 21: 0.2371 最大	.13:25	
0.1897		
0.1423		
0.0948		
0 最小		
	最大: 0.2371 mm	В
∡		
T _x		

ノード:835825 要素:505507 タイプ: 変位 単位: mm 2020/08/03, 18 0.5919 最大		
0.4735	15 14 14 1	
0.3551		
0.2368	10/2 Killing 1/2	<u>.</u>
0.1184		
0 最小	重大 0.5918 mm	c
₹		

SF	F1	F2	F3
blades	12 sheets	10 sheets	8 sheets
displacement	0.636 mm	$0.556~\mathrm{mm}$	0.478 mm

SF	F1	F2	F3	
blades	12 sheets	10 sheets	8 sheets	
displacement	$0.237 \; \text{mm}$	0.212 mm	0.188 mm	

SF	F1	F2	F3
blades	12 sheets	10 sheets	8 sheets
displacement	0.592 mm	0.518 mm	$0.445~\mathrm{mm}$

The improvement is evaluated using the current displacement value as an index.

Improvement Plan

• Base Plate Material

Carbon Fiber Reinforced Plastic: CFRP

炭素繊維強化プラスチック

	F1	F2	F3		
Models	12 sheets	10 sheets	8 sheets		
	displacement				
	0.636 mm	0.556 mm	$0.478~\mathrm{mm}$		
A	$0.235~\mathrm{mm}$	_	_		
В	0.237 mm	0.212 mm	0.188 mm		
В	$0.090~\mathrm{mm}$	_	_		
C	0.592 mm	$0.518 \mathrm{\ mm}$	$0.445~\mathrm{mm}$		
	0.219 mm	_	_		

Materials	$\rho \text{ kg m}^{-3}$	E GPa	σ MPa
MS1C	8.0×10^3	186	$\sigma_{\rm Y} = 1890$
SUS304	8.0	197	$\sigma_{\rm Y} = 520$
CFRP	1.94	588	$\sigma_{\rm B}=3820$

Out Gas

TML (Total Mass Loss: 質量損失比%) = 0.31~0.49%

CVCM (Collected Volatile Condensable Materials: 再凝縮物質量比%) = 0.00~0.01%

summary

- The improvement of the GAS filter corresponding to the increase in payload mass of 40 kg was examined.
- Current blades are designed also to fit the Buckling theory.
- We evaluated the rigidity of the base plate and defined an index for estimating improvement.
- If the base plate is changed to CFRP, the rigidity and weight reducing will be significantly improved and the degree of freedom in designing other parts will be increased.

Buckling Phenomenon

