Mode Damping

Introduction

* We plan to introduce eddy current damping at the top of the chain.
* We don't use eddy current at the lower stages, because it may be noisy.

* Is it possible to damp all the resonances passively? \rightarrow Maybe impossible
* If not, how to damp residual resonances? (Active control)
* Which filter's motion should be sensed and how to feed it back to the actuator?

Passive Damping

(1) Pendulum mode damping

Graph 1: Seismic noise level of the TM with/without eddy current damping

Assumption:

* 1% coupling of vertical motions
* Every GAS filter has 330 mHz resonant freq and $\mathrm{Q}=20$
* Damping coefficients are: horizontal: $80 \mathrm{~kg} / \mathrm{sec}$, vertical: $150 \mathrm{~kg} / \mathrm{sec}$, pitch/roll: $4 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{rad} / \mathrm{sec}$, yaw: $8 \mathrm{~kg} \mathrm{~m}{ }^{2} / \mathrm{rad} / \mathrm{sec}$
* Resonances at high freq ($>0.4 \mathrm{~Hz}$) are damped correctly, but lower resonances (@ $0.20 \mathrm{~Hz}, 0.32 \mathrm{~Hz}$) are not damped so much. The eddy current damping does not work effectively for those resonances.
* Especially, the lowest pendulum mode $(0.20 \mathrm{~Hz})$ makes the RMS amplitude of the TM displacement quite large (see Graph 3). We need to damp this mode actively to achieve small RMS amplitude.
* The viscous damping worsens the performance of the isolation system at high freq (>5 Hz, see Graph 2), but it doesn't matter because the thermal suspension noise will be much higher than the seismic noise at those freq.

Graph 2: Broad band ver.

Graph 3: RMS Amplitude

(2) Torsion Mode Damping

Graph 4: Transfer function from torque on TM, to angular displacement of TM (about yaw)

Graph 5: Impulse Response (with damping)

* All the resonances in $<0.1 \mathrm{~Hz}$ are correctly damped.
* The Q-value of the lowest eigenmode is ~ 5.
* We must keep in mind that the wiring may change the stiffness and Q of the wire torsion mode, and such kind of changes may spoil the performance of the passive damping.
* Active control may be necessary as a back-up.

Active Damping
Now Constructing ...

