

RSE関連検討項目

- ●RSE運用モード
 - ●ブロードバンド (Zero-detuning)
- ●長さ制御信号取得法
 - ●変調・復調方法、アシンメトリ、信号取得ポート
 - ●信号分離
 - ●散射雑音感度評価
- ●アラインメント信号取得法
 - ●変調・復調方法、信号取得ポート
 - ・リサイクリング共振器の縮退問題
 - ●信号分離
- ロックアクイジション
 - ・ロックシーケンス
 - ●アクチュエータのダイナミックレンジ問題
- **DCリードアウト**
 - ●RFリードアウトとの比較
 - ●オプションとして残す場合の手当

黒:既定項目

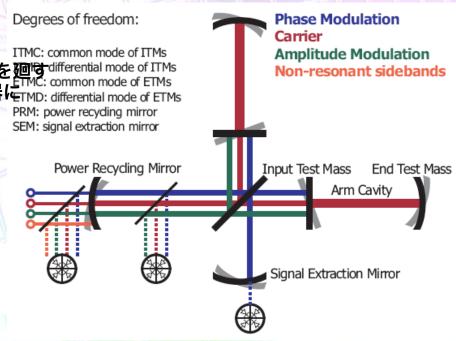
青:提案項目

緑:検討項目

アラインメント制御の開発

- ●アラインメント制御
 - ●干渉計の長期・短期安定性のためには、もはや必須アイテム
 - ●にもかかわらず、デザイン通り動いている干渉計は極めて数少ない
 - →相応の理由があるはず
 - ●問題の可能性はいるいる指摘されつつある
 - ●共振器の縮退問題
 - ●サイドバンドの幾何学的不安定性
 - ●熱レンズの効果
 - ●etc...

▶アラインメント制御の開発


- 東大での実験以降まとまった研究がない→特にRSEに関して
- ●LCGT向けの「詳細設計」にあたり
- ●他プロジェクトで露見しつつある問題をも SEM: signal extraction mirror 取り込むよい機会

Degrees of freedom: ITMC: common mode of ITMs ITMD: differential mode of ITMs ETMC: common mode of ETMs ETMD: differential mode of ETMs PRM: power recycling mirror SEM: signal extraction mirror Power Recycling Mirror Input Test Mass End Test Mass Arm Cavity Signal Extraction Mirror

アラインメント信号取得法(提案項目)

- ●変調・復調方法、信号取得ポート
 - ●二周波変調(位相変調+強度変調)、現在のLCGTデザイン
 - +非共振サイドバンド
 - ●通常の信号取得ポートを想定
- ▶リサイクリング共振器の縮退問題
 - ●縮退がある状態
 - ●独立な信号を得ることが困難
 - ▶サイドバンドの幾何学的不安定性
 - ●縮退を解く
 - ●ITM-ARに曲率をつけ、レンズ状に
 - →リサイクリング共振器内でGouy位相を廻りdifferential mode of ITMs
 - ●MMT相当の機能をリサイクリング共振器(ᡊTMD: differential mode of ETMs
 - →折りたたみリサイクリング共振器 (aLIGOの公式デザイン)
 - ▶検討項目
 - 鏡(曲率)は製作できるか?
 - →EMが可能なら原理的には可能か?
 - 雑音評価、制御安定性、等
 - ●etc...

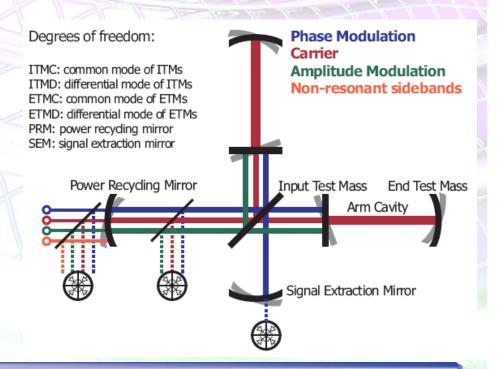
アラインメント信号取得法 (提案項目)

対角化済 対角化可能 対角化難

《ウ・日 ナ> 1

●信号分離

			稲 返 な し_				
Port	Demod.	ITMD	ETMD	ITMC	ETMC	PRM	SEM
Bright	PM-AM	(1)	-2×10^{-3}	3×10^{-4}	-5×10^{-7}	2×10^{-3}	-1×10^{-5}
Dark	CR-PM	0.6	(1)	-5×10^{-5}	-1×10^{-2}	6×10^{-2}	0
Bright	AM- NR	-9×10^{-3}	1×10^{-5}	(1)	-2×10^{-3}	0	0
Pickoff	CR-NR	1×10^{-4}	3×10^{-4}	0	(1)	(2)	0
Bright	AM- NR	5×10^{-5}	6×10^{-7}	0	1×10^{-5}	()	0
Pickoff	PM-AM	2×10^{-4}	4×10^{-7}	0	6×10^{-6}	0.9	1
<u> </u>	·	•	·	·	·	•	·


								<u>稲退あり</u>
Ī	Bright	PM- AM	1	-2×10^{-4}	-2×10^{-3}	4×10^{-6}	2×10^{-4}	5×10^{-4}
	Dark	CR- PM	(0.6)	(1)	5×10^{-5}	3×10^{-5}	-1×10^{-4}	0
	Bright	PM- AM	4×10^{-5}	-7×10^{-8}	(1)	-2×10^{-3}	-(0.6)	-(0.4)
	Bright	CR- NR	-3×10^{-3}	-8×10^{-3}	(0.6)	(1)	-2×10^{-2}	U
	Bright	CR- AM	-2×10^{-4}	O		2×10^{-4}	(1)	0
	Bright	CR- PM	-7×10^{-4}	-9×10^{-4}	(-2)	1×10^{-2}	(1)	(1)

縮退がない場合はどうにか対角化できそう→素性のよいアライメント信号が取れそう

アラインメント制御設計作業 (案)

- ●アラインメント制御設計書作成
 - ●「基本設計書」から「詳細設計書」相当の内容
 - ●設計 (評価) 指針
 - •検討項目
 - →基本、原理、現実、現場項目等、階層化
 - ●LCGTアラインメント制御設計
 - ●各プロジェクトで問題化している案件も解決策とともに盛り込む
- ●プロトタイプ実験計画(案)
 - ●原理検証実験@法政
 - ●縮退を解くことによる信号分離
 - ●テーブルトップ結合共振器
 - ●RSE実証実験@TAMA
 - ●RSEフル干渉計での制御実証実験
 - 全自由度制御による制御系評価

