Measurement of seismic motion at Large-scale Cryogenic Gravitational wave Telescope project site

ICRR Univ. of Tokyo, KEK $^{\text {A }}$, NAO $^{\text {B }}$, AIST ${ }^{\text {C }}$, ERI Univ. of Tokyo ${ }^{\text {D }}$

K. Yamamoto, S. Kamagasako, T. Uchiyama, S. Miyoki, M. Ohashi, K. Kuroda, T. Tomaru ${ }^{\text {A }}$, R. Takahashi ${ }^{\text {B }}$, D. Tatsumi ${ }^{\text {B }}$, S. Telada ${ }^{\text {C }}$, A. Araya $^{\text {D }}$, A. Takamori ${ }^{\text {D }}$

2005 September 14

The meeting of Physical Society of Japan
@Osaka City University

0. Abstract

Measurement of the seismic motion inside and outside Kamioka mine to search the suitable location
of LCGT (Large-scale Cryogenic Gravitational wave Telescope) project

Contents

1. Introduction

2. Experimental method
3. Results
4. Summary

1. Introduction

LCGT : future Japanese project
to construct the interferometric gravitational wave detector
Length of baseline : $\mathbf{3} \mathbf{~ k m}$
Location : Kamioka mine (Hida, north side of Gifu prefecture)
extremely small seismic motion
(100 or 1000 times smaller than that near Tokyo)
(1) low noise (low frequency region)
(2) stable operation

Is seismic motion small in Kamioka mine everywhere ?

Site

Kamioka (LCGT site)
220km west from Tokyo

2. Experimental method

2-1. Sensor
Accelerometer RION LA-50

Laser Interferometer
Observation band $0.1 \mathrm{~Hz}-100 \mathrm{~Hz}$

Horizontal and
Vertical measurement

2-2. Location
Outside of mine
Outside of Mozumi office
Dormitory
Do
Atotsu office
West of Atotsu office (500m)
Inside of mine
Mozumi shaft ($0 \mathrm{~m}, 50 \mathrm{~m}, 100 \mathrm{~m}, 200 \mathrm{~m}, 500 \mathrm{~m}, 800 \mathrm{~m}$ from exit) CLIO site

Measurement at Atotsu office

Outside of Mozumi office

Measurement apparatus

Truck

Electric locomotive

Fixed accelerometer

3. Results

3-1. Ouside of mine

$<\mathbf{1 ~ H z}$

(Outside of mine) $=($ CLIO $)$
$>1 \mathrm{~Hz}$
(Outside of mine) $>($ CLIO)

3-2. Inside of mine

$>50 \mathrm{~m}$

silent sufficiently !

Main mirrors

50 m from ground

3-3. Reproducibility

Data in time domain

Water current?

3-4. Problem of water
Length of baseline : 3 km
\longrightarrow Ditch is necessary.
Ditch must be far from main mirrors.
How far?
CLIO perpendicular end : sufficiently small seismic motion
Distance between CLIO perpendicular end and Atotsu shaft (with ditch) : 60 m
4. Summary
(1) Measurement of seismic motion inside and outside Kamioka mine to search suitable location of LCGT interferometer
(2) Outside mine : large seismic motion
(3) Inside mine : sufficiently small seismic motion (50 m from exit)
(4) Water current : source of vibration

Ditch must be far from main mirrors.

Acknowledgment
Staff of Kamioka mine
(Especially, Mr. Nishitani)

Vertical motion

 in Mozumi shaftRION has problems.

Mozumi shaft

Mozumi shaft

江刺地球潮汐観測トンネルにおける地面振動の測定

重力波検出器の建設場所の条件として地面振動のレベルが小さいことが挙げら れる。国内の地面振動か場所によってどのように違うかを調査する目的で，これま でにいくつかの場所で定常的な地面振動の測定を行なってきた。今回は国立天文台水沢観測センターの江剌地球潮洺観測施設内トンネル［1］（岩手県江刺市伊手阿原山，図1）にて測定を行なった。このトンネルは阿原（あばら）山の北斜面標高約 400m の山腹に掘られた横穴で，安定した花崗岩带にある。また，市街地から䕌れ ているために人工的なノイズも小さく地面掁動レベルもかなり小さいものと期待さ れる。

今回の測定は平成 7 年 2 月から 3 月にかけて， 2 つの目的で行なわれた。一つ はトンネルの内部と入口付近のスペクトルを比較して地表の外乱がどの程度影響す るかを調べることである。このような実験はこれまでには行なっていなかった。も う一つの目的は比較的長期間連続測定を行ない， 1 Hz 付近の地面振動レベルの変化 をみることである。というのは，同様の測定を三䳸の天文台で行なったところ日周変化が見られたためである。人工的なものの可能性が高いが，自然現象によるもの とも考えられるので江刺の測定結果により原因がある程度推測できるはずである。

測定に用いた振動計はこれまでの調査でも使ってきた（株）リオン製のレーザー加速度計 LA－50 で，水平方向の振動成分を測定した。測定データはパソコンのAD コンバーターで取り込んだ。スペクトルデータについてはQuick Look の FFT プ ログラムでその場でフーリエ変換した。長期観測用のデータについては時系列の形 でハードディスクに書き込まれ，持ち帰って解析を行なう。データ取得系のブロッ ク図を図2に示す。

スペクトルの測定は図3に示した三地点で行なった。測定点1は江刺精密実験室内である。この実験室は重力計をはじめとする精密実験のために作られた，トン ネルとは隔離された部屋で，湿度もある程度低くなっている。今回の測定では測定器類の保護を考え，加速度計部分以外はこの実験室内に設置してデータ取得を行なっ た。加速度センサーは実験室外の測定点 2 に接着剤で固定した。実験室外に設置す ることで室内の測定機器類から生じる音の影響を避けられる。実際に測定点1と2 で振動スペクトルを比較したところ 100 Hz 以上の帯域で音の影響が大きいことがわ

図1 江刺地球潮汐観測トンネル周辺

図2 データ取得系

かった。しかし， 100 Hz 以下ではほとんど差が見られなかった。
つぎに，得られたスペクトルの絶対値が正しいものであるかを確かめるために観測センター所有の地莀計出力のスペクトルと比較した。この地震計（PELS TYPE 73，測定点 1 に設直）は長周期（約 10 秒）の振り子と地面との相対位置をコイルと マグネットを利用して読みとる速度計である。図4和加速度計（RION）と速度㖕 （PELS）の出力をともに変位換算したスペクトルであり，両者はほほ一致していて正しい変位を与えていることがわかる。

トンネルの内外での振動レベルの測定を続いて行なった。トンネル外の測定地点 3 のデータとトンネル内地点 2 のデータを比較したものが図 5 である。 1 Hz 以下では両者は一致しているがそれ以上の周波数になると徐々に増加して 10 Hz から 100 Hz の帯域ではほほ 1 桁トンネルの外の方が振動レベルが大きくなっている。地点 3 の数 Hz 以上の振動は風や測定機器類あるいは建物関係に由来するノイズであ る可能性が考えられる。高周波の振動波は減衰しやすい性質があるので，地表の数 Hz 以上のノイズが減衰して図のトンネル内のレベルになっていると解釈できる。

これまで測定したいくつかの地点（岐阜県上宝トンネル，岩手県釜石トンネル，東大本郷キャンパス）でのデータと今回測定のデータ（測定点 2 ）を比較したもの が図 6 である。トンネル内のデー夕は東大のものよりも 1 桁から 2 桁小さいが，い ずれも 10 Hz 以下ではほほ一致している。釜石のデータの 10 Hz 以上が大きいのは地下水流などの環境の違いによるものと思われる。上宝と今回の江刺のデータはほ ほ一致している。上宝のデータはマイケルソン干渉計型高感度地莀計によるもので あり，このレベルが地霞計のノイズによるものでないことはわかっている。今回の データがそれと細かいところまで一致しているところをみると，これが加速度セン サーのノイズとは考えにくい。これらが正しい地面振動を反映しているとすると，地下の地面振動スペクトルは全くはなれた上宝と江剌で一致していることになり，非常に興味深い。

長期間観測の方は現在時系列データの測定を行なっており，測定点 2 の地面振動を 20 Hz サンブリングでハードディスクに取り込んでいる。観測期間は 3 週間を予定している。上述のトンネル内のスペクトルの一致を考えると，三䳸でみられた ような 1 Hz 成分の変動は観測されないと予想されるが，実際にはどのようになるの であろうか。

図 5 トンネル内外の地面振動スペクトル

図6 他の場所の地面振動スペクトルとの比較

参考文献

［1］坪川恒也，「江刺精密実験室」，国立天文台水沢観測センター技報（No．3，1991）．

PELS（速度計）© 精密実駿空内

図3 地面振動測定地点（文献［1］より転載）

図 4 RION（加速度計）と PELS（速度計）の変位換算出力

