Dilution factor of the pendulum

Daisuke Tatsumi

July 22, 2009

The mechanical loss of a pendulum suspension, $\phi_{\rm pend}$ can be shown to be [1]

$$\phi_{
m pend} = rac{k_{
m fiber}}{k_{
m fiber} + k_{
m gravity}} \, \phi_{
m fiber} \sim rac{k_{
m fiber}}{k_{
m gravity}} \, \phi_{
m fiber}$$

$$D \equiv rac{k_{
m fiber}}{k_{
m gravity}} = rac{\sqrt{TYI}}{2\,l^2} \Big/ rac{mg}{l} = rac{\sqrt{TYI}}{2mg\,l}$$

The ratio of the gravitational spring constant k_{gravity} to the elastic spring constant of the suspension fibre k_{fiber} is the pendulum dilution factor D. Here T, Y, I, m, g, l are wire tension, Young modulus, moment of cross section, mass which is suspended by wire, gravity constant and wire length, respectivelly.

$$T = mg$$
$$I = \frac{\pi d^4}{64}$$

Here d is wire diameter.

er.
$$\therefore D = \frac{d^2}{16 l} \sqrt{\frac{\pi Y}{mg}}$$

Table 1: Pure Al Wire Case

		CLIO	KEK
Young modulus	Y	70 GPa	
Mass	m	0.450 kg	$0.150~\mathrm{kg}$
Wire diameter	d	$0.5 \mathrm{\ mm}$	
Wire length	l	$0.400 \; \mathrm{m}$	$0.100 \mathrm{\ m}$
Number of wires		4	1
Dilution factor	\overline{D}	8.7e-3	6.0e-2

References

 $[1]\,$ P. R. Saulson, Physical Review D 42, 2437 (1990).