Differences between revisions 28 and 224 (spanning 196 versions)
Revision 28 as of 2010-06-01 14:38:19
Size: 1979
Editor: NaokoOhishi
Comment:
Revision 224 as of 2010-11-16 14:36:10
Size: 14636
Editor: NaokoOhishi
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:

 目標:CLIOのデジタル制御システムに関わる回路類の性能評価(評価基準の指定)と評価データ蓄積方法の決定。<<BR>>
 2010年6月の評価開始以後、LCGTに予算がついたため、LCGTデジタル用の仕様書作成も目的に含める。<<BR>>
 担当:大石、斉藤 <<BR>>
 supervisor:宮川、辰巳、神田ほか<<BR>>
 参考:[[CLIO/ Tasks/ DigitalControl/ Caltech_setup|2.辰巳からの要望 の3]]<<BR>>

 <<TableOfContents>>
Line 5: Line 13:
 CLIOのデジタル制御システムは、とりあえず以下のように構成される。
||Analog input ||>||(Whitening Filter)||>|| Differential driver||>|| AntiAliasing Filter|| >|| ADC ||>|| Digital control ||>|| DAC ||>||AntiImaging Filter(=AA) ||>|| Differential Receiver ||>|| (Dewhitening Filter) ||>||Analog output||
 CLIOのアナログ-デジタルは、2010年6月現在、以下のように構成されている。
 ||Analog input ||>||(Whitening Filter)||>|| Differential driver||>|| AntiAliasing Filter|| >|| ADC ||>|| Digital control ||>|| DAC ||>||AntiImaging Filter(=AA) ||>|| Differential Receiver ||>|| (Dewhitening Filter) ||>||Analog output||
Line 8: Line 16:
 (white/dewhite filterは雑音レベルを気にするときのみ使用。)<<BR>>
 また、2010年5月現在、CLIOでは、デジタル制御システムのパーツとして、AA, DD, DRの3種類の回路が作成されている。<<BR>>
 近日中に、以下のように変更予定。
 ||Analog input ||>||Differential Driver||>||(Whitening filter)||>||AntiAliasing Filter||>||ADC||>||Digital Control||>||DAC||>||AntiImaging Filter(=AA)||>||Differential Receiver||>||(Dewhitening filter)||>||Analog output||
Line 11: Line 19:
 今後、CLIOの感度を出していく基礎データとして、これらの構成要素の特性を調べ、記録しておく。
 アナログ回路の特性(伝達関数、雑音レベル)の測定には、スペアナを、<<BR>>
 デジタル回路の特性(伝達関数、雑音レベルなど)の測定には、diaguuiを用いる。<<BR>>
 CLIO内は電源60Hzの振幅が大きく、これがdynamic rangeを制限する可能性があるため、初段に差動入力回路を入れる。<<BR>>
 white/dewhite filterは雑音レベルを気にするときのみ使用。<<BR>>
 2010年5月現在、CLIOでは、AA, DD, DRの3種類の回路を試作済
 ([[http://gw.icrr.u-tokyo.ac.jp/JGWwiki/CLIO/Tasks/DigitalControl/TaskList|タスクリスト]]参照)。<<BR>>
Line 15: Line 24:
== diagguiのつかいかた ==  今後、CLIOの感度を出していくための基礎データとして、これらの構成要素の特性を調べ、記録していく。
 * アナログ回路の特性(伝達関数、雑音レベル)の測定には、スペアナを(参考:[[CLIO/SiteInfo/operation/DataTransfer |スペアナからのデータ取り出し]]) 
 * デジタル回路の特性(伝達関数、雑音レベル)の測定には、diaguuiを用いる。[[CLIO/Tasks/DigitalControl/Diaggui|Diagguiのつかいかた]]<<BR>>

== ADCの評価 ==

 ADC(Analog-to-Digital Converter)は、アナログ信号をデジタル信号に変換するもので、CLIO, LCGTでは、General Standards社の [[http://www.generalstandards.com/view-products.php?product=pmc66-16ai64ssa| PMC66-16AI64SSA-64-50MHz-MEM]]; 16bit, 64 single channel(=32 differential input), +/-10V (40Vp-p for differential) を用いている。<<BR>>
 ADCの評価は、入力信号に対する応答、雑音レベルの2つの観点から行う。

 チャネルとtest pointの対応は[[CLIO/Tasks/DigitalControl/ADC_C2TP_List|こちら]](2010.Nov時点)

=== calibration ===

 デジタル信号の1LSB(Least Significant Bit)は、rangeをビット数で割ったものになり、
 {{{
  1LSB=20V/16bit=20/65536=0.305mV
 }}}
 入力においてこれより小さな値を識別することはできない(ただし、digital内部での処理は32bitで行われる)。<<BR>>

 線形性の確認
Line 17: Line 45:
 portaで  安定化オフセット回路(2010年12月中旬TAMAより到着予定)を用いて、系統的に試験をする予定
(±0.01Vを30点。0.02/30=0.67mV、最大電圧付近の5%を30点。10Vで考えると、5%/30=0.5V/30=16.7mV。マイナス側も。
 それから、最大電圧を超えた場合のふるまい。110,120,130,140,150%を正負両方で。100点計測=20V/100=0.2V)。


 以下は初期結果。
 
 ADCのchannel 5-8において、入力信号が、Digital内部での値と整合するかのチェックを行った。
 AgilentのFunction Generatorから、+/-0.5Vの矩形波を入力し、振幅のカウント数が整合しているか測定した。
 基準値は
Line 19: Line 56:
  $diaggui &
  }}}
 とすると、Diagnostic test toolsという画面が現れる。4つのtab(Input, Measurement, Excitation, Result)のうち、通常はMeausrementのtabが選択されています。<<BR>>
 次の、Measurement boxの中で、
 * 雑音レベルの測定をするときは、Fourier Powerを選択します。
 * 伝達関数の測定をするときは、Swept Sine Responseを選択します。<<BR>>
 1V/1LSB=3276.8
 }}}
 で、誤差を%で併記した。
Line 26: Line 60:
 次に、Fourier Powerを選択した場合について、
 Measurement Channels boxで、Channel 0 to 19 が選択されており、たとえば、ドロップダウンリストから、選択してチェックボックスをチェックする。
 {{attachment:diaggui_select.png}}
 ||channel||input +0.5V ||input -0.5V || amplitude || offset ||
 || ch5 || 1638.25 || -1626.06 || 3264.31 (0.4%) || 12.19 (0.4%) ||
 || ch6 || 1637.54 || -1627.01 || 3264.55 (0.4%) || 10.53 (0.3%) ||
 || ch7 || 1637.93 || -1626.78 || 3264.71 (0.4%) || 11.15 (0.3%) ||
 || ch8 || 1639.37 || -1623.97 || 3263.34 (0.4%) || 15.40 (0.5%) ||
 
=== ADC雑音スペクトル測定 ===

 i)入力を短絡した場合、
 ii)DC1Vを入力した場合、および
 iii)1Vp-p@1kHzの信号を入力した場合(差動入力にしていないので0.5Vp-pになる)の雑音スペクトルを測定する。
 信号はAgilent Function Generator 33220Aより出力し、測定にはdiagguiを用いた。DC1Vは、発信器出力501.1mVDCで行った。
 差動入力になるので、。

 || ||input short spec ||input short hist||input 1VDC spec||input 1Vpp@1kHz||1Vpp@1kHz+AA||
 ||ch0_3||[[attachment:input_shorted_ADC_powerspec_ch0_3.pdf|IS_P_Ch0_3]]||[[attachment:input_shorted_ADC_hist_ch0_3.pdf|IS_H_Ch0_3]]||[[attachment:input_DC1V_ADC_powerspec_ch0_3.pdf|ID_P_Ch0_3]]||[[attachment:input_1V1k_ADC_powerspec_ch0_3.pdf|IA_P_Ch0_3]]||||
 ||ch4_7||[[attachment:input_shorted_ADC_powerspec_ch4_7.pdf|IS_P_Ch4_7]]||[[attachment:input_shorted_ADC_hist_ch4_7.pdf|IS_H_Ch4_7]]||[[attachment:input_DC1V_ADC_powerspec_ch4_7.pdf|ID_P_Ch4_7]]||[[attachment:input_1V1k_ADC_powerspec_ch4_7.pdf|IA_P_Ch4_7]]||||
 ||ch8_9||[[attachment:input_shorted_ADC_powerspec_ch8_9.pdf|IS_P_Ch8_9]]||[[attachment:input_shorted_ADC_hist_ch8_9.pdf|IS_H_Ch8_9]]||[[attachment:input_DC1V_ADC_powerspec_ch8_9.pdf|ID_P_Ch8_9]]||[[attachment:input_1V1k_ADC_powerspec_ch8_9.pdf|IA_P_Ch8_9]]||||
 ||ch16_19||[[attachment:input_shorted_ADC_powerspec_ch16_19.pdf|IS_P_Ch16_19]]||[[attachment:input_shorted_ADC_hist_ch16_19.pdf|IS_H_Ch16_19]]||[[attachment:input_DC1V_ADC_powerspec_ch16_19.pdf|ID_P_Ch16_19]]||[[attachment:input_1V1k_ADC_powerspec_ch16_19.pdf|IA_P_Ch16_19]]||||
 ||ch20_23||[[attachment:input_shorted_ADC_powerspec_ch20_23.pdf|IS_P_Ch20_23]]|| ||[[attachment:input_DC1V_ADC_powerspec_ch20_23.pdf|ID_P_Ch20_23]]||[[attachment:input_1V1k_ADC_powerspec_ch20_23.pdf|IA_P_Ch20_23]]||||
 ||ch24_27||[[attachment:input_shorted_ADC_powerspec_ch24_27.pdf|IS_P_Ch24_27]]|| ||[[attachment:input_DC1V_ADC_powerspec_ch24_27.pdf|ID_P_Ch24_27]]||[[attachment:input_1V1k_ADC_powerspec_ch24_27.pdf|IA_P_Ch24_27]]||||
 ||ch28_31||[[attachment:input_shorted_ADC_powerspec_ch28_31.pdf|IS_P_Ch28_31]]|| ||[[attachment:input_DC1V_ADC_powerspec_ch28_31.pdf|ID_P_Ch28_31]]||[[attachment:input_1V1k_ADC_powerspec_ch28_31.pdf|IA_P_Ch28_31]]||||

== DACの評価 ==
 DAC(Digital-to-Analog Converter)は、デジタル信号をアナログ信号に変換するもので、General Standards社の [[http://www.generalstandards.com/view-products.php?product=pmc66-16ao16| PMC66-16AO16-16-F0-DF-MEM]]; 16bit, 16 differential output, +/-5V(20Vp-p for differential) を用いている。<<BR>>
 デジタル入力からアナログ出力への較正と、雑音を評価する。
Line 30: Line 87:
diagguiなどで用いられている略語は、や
[[http://gw.icrr.u-tokyo.ac.jp/JGWwiki/LCGT/subgroup/ifo/ISC/Terminology||こちら]]を参照してください。
Line 33: Line 88:
=== calibration ===

=== DACの雑音スペクトル測定 ===

 HP3562Aをもちいて、DACの雑音スペクトルを測定する。設定は、POWER SPECモード、入力coupling AC、linear specで、Hanning window、Avg:10(stable mean)、周波数は100Hz(LF)と100kHz(HF)で測定した。表示はrms V/sqrt(Hz)。
 入力状態を3種類変えて、DRの出力スペクトルを測定した。<<BR>>
 * AI(SN006)の入力をshortして、出力をDR(SN002)に接続し、その出力をみる。
 *
 *
Line 34: Line 98:
|| ||shortedAI(SN006)>DR(SN002)||ZeroFilledDAC>AI(SN006)>DR(SN002)||
||グラフ||[[attachment:PS_SAI006_DR002.pdf]]||[[attachment:PS_ZDAC_AI006_DR002.pdf]]||
||ch1||[[attachment:PS_SAI006_DR002_ch1_LF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch1_LF.txt]]||
|| ||[[attachment:PS_SAI006_DR002_ch1_HF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch1_HF.txt]]||
||ch2||[[attachment:PS_SAI006_DR002_ch2_LF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch2_LF.txt]]||
|| ||[[attachment:PS_SAI006_DR002_ch2_HF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch2_HF.txt]]||
||ch3||[[attachment:PS_SAI006_DR002_ch3_LF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch3_LF.txt]]||
|| ||[[attachment:PS_SAI006_DR002_ch3_HF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch3_HF.txt]]||
||ch4||[[attachment:PS_SAI006_DR002_ch4_LF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch4_LF.txt]]||
|| ||[[attachment:PS_SAI006_DR002_ch4_HF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch4_HF.txt]]||

== Differential Driverの評価 ==
 DDを入れる主目的は、60Hzなどの雑音の除去である。
 各チャンネルが大きな問題なく動いているかどうかを確認するために、Hewlett Packardの3562Aを用いて、伝達関数の測定を行った。出力側はSR560で取った。位相の反転は要確認。<<BR>>

||型番||基盤番号||入力チャンネル||グラフ||テキストデータ||古いデータ(あれば)||
||0900061||SN001||1||[[attachment:TF_DD_SN001_gain.pdf]]||[[attachment:TF0900061SN001ch1.txt]]||||
||0900061||SN001||2||[[attachment:TF_DD_SN001_phase.pdf]]||[[attachment:TF0900061SN001ch2.txt]]||||
||0900061||SN001||3|| ||[[attachment:TF0900061SN001ch3.txt]]||||
||0900061||SN001||4|| ||[[attachment:TF0900061SN001ch4.txt]]||||
||0900061||SN002||1||[[attachment:TF_DD_SN002_gain.pdf]] ||[[attachment:TF0900061SN002ch1_rev.txt]]||[[attachment:TF0900061SN002ch1.txt]]||
||0900061||SN002||2||[[attachment:TF_DD_SN002_phase.pdf]] ||[[attachment:TF0900061SN002ch2_rev.txt]]||[[attachment:TF0900061SN002ch2.txt]]||
||0900061||SN002||3|| ||[[attachment:TF0900061SN002ch3.txt]]||||
||0900061||SN002||4|| ||[[attachment:TF0900061SN002ch4.txt]]||||
||0900061||SN003||1||[[attachment:TF_DD_SN003_gain.pdf]] ||[[attachment:TF0900061SN003ch1_rev.txt]]||[[attachment:TF0900061SN003ch1.txt]]||
||0900061||SN003||2||[[attachment:TF_DD_SN003_phase.pdf]] ||[[attachment:TF0900061SN003ch2.txt]]||||
||0900061||SN003||3|| ||[[attachment:TF0900061SN003ch3.txt]]||||
||0900061||SN003||4|| ||[[attachment:TF0900061SN003ch4.txt]]||||
||0900061||SN004||1||[[attachment:TF_DD_SN004_gain.pdf]] ||[[attachment:TF0900061SN004ch1.txt]]||||
||0900061||SN004||2||[[attachment:TF_DD_SN004_phase.pdf]] ||[[attachment:TF0900061SN004ch2_rev.txt]]||[[attachment:TF0900061SN004ch2.txt]]||
||0900061||SN004||3|| ||[[attachment:TF0900061SN004ch3.txt]]||||
||0900061||SN004||4|| ||[[attachment:TF0900061SN004ch4_rev.txt]]||[[attachment:TF0900061SN004ch4.txt]]||

=== 60Hzの除去性能 ===

== AntiAliasing(=AntiImaging)Filterの測定 ==

AntiAliasingFilterは、高周波の映り込みを避けるためのもので、AntiImaging filterと同じである。
現在Differential Driverと同じ基盤を使っているので、基盤番号はDDと同じになる。
よって、SNは005, 006としておく。伝達関数の測定は、HP3562Aを用いて行った。
今回は、65kHz付近の周波数分解能は600Hzほどで測定を行っているので、gain@65535Hzは、実際には65501Hzの値を読んでいる。
notch周波数の精度もその程度である。


||型番||基盤番号||入力ch||グラフ||テキストデータ||notch freq.||gain @ 65536Hz||
||0900061||SN005||1||[[attachment:TF_AA_SN005_gain.pdf]]||[[attachment:TF0900061SN005ch1.txt]]||68.391kHz||-72.9dB||
||0900061||SN005||2||[[attachment:TF_AA_SN005_phase.pdf]]||[[attachment:TF0900061SN005ch2.txt]]||70.794kHz||-70.2dB||
||0900061||SN005||3|| ||[[attachment:TF0900061SN005ch3.txt]]||70.794kHz||-71.3dB||
||0900061||SN005||4|| ||[[attachment:TF0900061SN005ch4.txt]]||70.794kHz||-71.6dB||
||0900061||SN006||1||[[attachment:TF_AA_SN006_gain.pdf]]||[[attachment:TF0900061SN006ch1.txt]]||68.391kHz||-72.9dB||
||0900061||SN006||2||[[attachment:TF_AA_SN006_phase.pdf]]||[[attachment:TF0900061SN006ch2.txt]]||68.391kHz||-73.0dB||
||0900061||SN006||3|| ||[[attachment:TF0900061SN006ch3.txt]]||70.794kHz||-70.9dB||
||0900061||SN006||4|| ||[[attachment:TF0900061SN006ch4.txt]]||70.794kHz||-71.8dB||

== Differential Receiverの測定 ==

DRの各チャンネルが大きな問題なく動いているかどうかを確認するために、Hewlett Packardの3562Aを用いて、伝達関数の測定を行った。<<BR>>
SN001のch2は、抵抗が一本抜けていたため、当初ゲインが半分であった。
||型番||基盤番号||入力チャンネル||グラフ||テキストデータ||古いデータ(あれば)||
||0900067||SN001||1||[[attachment:TF_DR_SN001_gain_rev.pdf]]||[[attachment:TF0900067SN001ch1.txt]]||||
||0900067||SN001||2||[[attachment:TF_DR_SN001_phase_rev.pdf]]||[[attachment:TF0900067SN001ch2_rev.txt]]||[[attachment:TF0900067SN001ch2.txt]]||
||0900067||SN001||3|| ||[[attachment:TF0900067SN001ch3.txt]]||||
||0900067||SN001||4|| ||[[attachment:TF0900067SN001ch4.txt]]||||
||0900067||SN002||1||[[attachment:TF_DR_SN002_gain.pdf]]||[[attachment:TF0900067SN002ch1.txt]]||||
||0900067||SN002||2||[[attachment:TF_DR_SN002_phase.pdf]]||[[attachment:TF0900067SN002ch2.txt]]||||
||0900067||SN002||3|| ||[[attachment:TF0900067SN002ch3.txt]]||||
||0900067||SN002||4|| ||[[attachment:TF0900067SN002ch4.txt]]||||
||0900067||SN003||1||[[attachment:TF_DR_SN003_gain.pdf]]||[[attachment:TF0900067SN003ch1.txt]]||||
||0900067||SN003||2||[[attachment:TF_DR_SN003_phase.pdf]]||[[attachment:TF0900067SN003ch2.txt]]||||
||0900067||SN003||3|| ||[[attachment:TF0900067SN003ch3.txt]]||||
||0900067||SN003||4|| ||[[attachment:TF0900067SN003ch4.txt]]||||
||0900067||SN004||1||[[attachment:TF_DR_SN004_gain.pdf]]||[[attachment:TF0900067SN004ch1.txt]]||||
||0900067||SN004||2||[[attachment:TF_DR_SN004_phase.pdf]]||[[attachment:TF0900067SN004ch2.txt]]||||
||0900067||SN004||3|| ||[[attachment:TF0900067SN004ch3.txt]]||||
||0900067||SN004||4|| ||[[attachment:TF0900067SN004ch4.txt]]||||

== 遅延時間とカップリングの評価 ==

 DACからの出力を、D-SUB 9pinでADCにつないで、遅延時間とカップリングの評価を行った。
 DACとADCの比から、低周波で-6dBとなる。

||出力ch||グラフ(gain)||グラフ(phase)||
||ETMX||[[attachment:ETMX-DAC-ADC-ALL_gain.pdf]]||[[attachment:ETMX-DAC-ADC-ALL_phase.pdf]]||
||ETMY||[[attachment:ETMY-DAC-ADC-ALL_gain.pdf]]||[[attachment:ETMY-DAC-ADC-ALL_phase.pdf]]||
||SPI_RM_L||[[attachment:SPI_RM_L-DAC-ADC-ALL_gain.pdf]]||[[attachment:SPI_RM_L-DAC-ADC-ALL_phase.pdf]]||
||SPI_RM_R||[[attachment:SPI_RM_R-DAC-ADC-ALL_gain.pdf]]||[[attachment:SPI_RM_R-DAC-ADC-ALL_phase.pdf]]||

PerformanceTest

CLIO Digital

  • CLIOのアナログ-デジタル間は、2010年6月現在、以下のように構成されている。

    Analog input

    >

    (Whitening Filter)

    >

    Differential driver

    >

    AntiAliasing Filter

    >

    ADC

    >

    Digital control

    >

    DAC

    >

    AntiImaging Filter(=AA)

    >

    Differential Receiver

    >

    (Dewhitening Filter)

    >

    Analog output

    近日中に、以下のように変更予定。

    Analog input

    >

    Differential Driver

    >

    (Whitening filter)

    >

    AntiAliasing Filter

    >

    ADC

    >

    Digital Control

    >

    DAC

    >

    AntiImaging Filter(=AA)

    >

    Differential Receiver

    >

    (Dewhitening filter)

    >

    Analog output

    CLIO内は電源60Hzの振幅が大きく、これがdynamic rangeを制限する可能性があるため、初段に差動入力回路を入れる。
    white/dewhite filterは雑音レベルを気にするときのみ使用。
    2010年5月現在、CLIOでは、AA, DD, DRの3種類の回路を試作済 (タスクリスト参照)。
    今後、CLIOの感度を出していくための基礎データとして、これらの構成要素の特性を調べ、記録していく。

  • アナログ回路の特性(伝達関数、雑音レベル)の測定には、スペアナを(参考:スペアナからのデータ取り出し) 

  • デジタル回路の特性(伝達関数、雑音レベル)の測定には、diaguuiを用いる。Diagguiのつかいかた

ADCの評価

  • ADC(Analog-to-Digital Converter)は、アナログ信号をデジタル信号に変換するもので、CLIO, LCGTでは、General Standards社の PMC66-16AI64SSA-64-50MHz-MEM; 16bit, 64 single channel(=32 differential input), +/-10V (40Vp-p for differential) を用いている。
    ADCの評価は、入力信号に対する応答、雑音レベルの2つの観点から行う。

    チャネルとtest pointの対応はこちら(2010.Nov時点)

calibration

  • デジタル信号の1LSB(Least Significant Bit)は、rangeをビット数で割ったものになり、
      1LSB=20V/16bit=20/65536=0.305mV

    入力においてこれより小さな値を識別することはできない(ただし、digital内部での処理は32bitで行われる)。
    線形性の確認 安定化オフセット回路(2010年12月中旬TAMAより到着予定)を用いて、系統的に試験をする予定

(±0.01Vを30点。0.02/30=0.67mV、最大電圧付近の5%を30点。10Vで考えると、5%/30=0.5V/30=16.7mV。マイナス側も。

  • それから、最大電圧を超えた場合のふるまい。110,120,130,140,150%を正負両方で。100点計測=20V/100=0.2V)。 以下は初期結果。 ADCのchannel 5-8において、入力信号が、Digital内部での値と整合するかのチェックを行った。 AgilentのFunction Generatorから、+/-0.5Vの矩形波を入力し、振幅のカウント数が整合しているか測定した。 基準値は
     1V/1LSB=3276.8
    で、誤差を%で併記した。

    channel

    input +0.5V

    input -0.5V

    amplitude

    offset

    ch5

    1638.25

    -1626.06

    3264.31 (0.4%)

    12.19 (0.4%)

    ch6

    1637.54

    -1627.01

    3264.55 (0.4%)

    10.53 (0.3%)

    ch7

    1637.93

    -1626.78

    3264.71 (0.4%)

    11.15 (0.3%)

    ch8

    1639.37

    -1623.97

    3263.34 (0.4%)

    15.40 (0.5%)

ADC雑音スペクトル測定

DACの評価

  • DAC(Digital-to-Analog Converter)は、デジタル信号をアナログ信号に変換するもので、General Standards社の PMC66-16AO16-16-F0-DF-MEM; 16bit, 16 differential output, +/-5V(20Vp-p for differential) を用いている。
    デジタル入力からアナログ出力への較正と、雑音を評価する。

calibration

DACの雑音スペクトル測定

  • HP3562Aをもちいて、DACの雑音スペクトルを測定する。設定は、POWER SPECモード、入力coupling AC、linear specで、Hanning window、Avg:10(stable mean)、周波数は100Hz(LF)と100kHz(HF)で測定した。表示はrms V/sqrt(Hz)。 入力状態を3種類変えて、DRの出力スペクトルを測定した。

  • AI(SN006)の入力をshortして、出力をDR(SN002)に接続し、その出力をみる。

shortedAI(SN006)>DR(SN002)

ZeroFilledDAC>AI(SN006)>DR(SN002)

グラフ

PS_SAI006_DR002.pdf

PS_ZDAC_AI006_DR002.pdf

ch1

PS_SAI006_DR002_ch1_LF.txt

PS_ZDAC_AI006_DR002_ch1_LF.txt

PS_SAI006_DR002_ch1_HF.txt

PS_ZDAC_AI006_DR002_ch1_HF.txt

ch2

PS_SAI006_DR002_ch2_LF.txt

PS_ZDAC_AI006_DR002_ch2_LF.txt

PS_SAI006_DR002_ch2_HF.txt

PS_ZDAC_AI006_DR002_ch2_HF.txt

ch3

PS_SAI006_DR002_ch3_LF.txt

PS_ZDAC_AI006_DR002_ch3_LF.txt

PS_SAI006_DR002_ch3_HF.txt

PS_ZDAC_AI006_DR002_ch3_HF.txt

ch4

PS_SAI006_DR002_ch4_LF.txt

PS_ZDAC_AI006_DR002_ch4_LF.txt

PS_SAI006_DR002_ch4_HF.txt

PS_ZDAC_AI006_DR002_ch4_HF.txt

Differential Driverの評価

  • DDを入れる主目的は、60Hzなどの雑音の除去である。

    各チャンネルが大きな問題なく動いているかどうかを確認するために、Hewlett Packardの3562Aを用いて、伝達関数の測定を行った。出力側はSR560で取った。位相の反転は要確認。

型番

基盤番号

入力チャンネル

グラフ

テキストデータ

古いデータ(あれば)

0900061

SN001

1

TF_DD_SN001_gain.pdf

TF0900061SN001ch1.txt

0900061

SN001

2

TF_DD_SN001_phase.pdf

TF0900061SN001ch2.txt

0900061

SN001

3

TF0900061SN001ch3.txt

0900061

SN001

4

TF0900061SN001ch4.txt

0900061

SN002

1

TF_DD_SN002_gain.pdf

TF0900061SN002ch1_rev.txt

TF0900061SN002ch1.txt

0900061

SN002

2

TF_DD_SN002_phase.pdf

TF0900061SN002ch2_rev.txt

TF0900061SN002ch2.txt

0900061

SN002

3

TF0900061SN002ch3.txt

0900061

SN002

4

TF0900061SN002ch4.txt

0900061

SN003

1

TF_DD_SN003_gain.pdf

TF0900061SN003ch1_rev.txt

TF0900061SN003ch1.txt

0900061

SN003

2

TF_DD_SN003_phase.pdf

TF0900061SN003ch2.txt

0900061

SN003

3

TF0900061SN003ch3.txt

0900061

SN003

4

TF0900061SN003ch4.txt

0900061

SN004

1

TF_DD_SN004_gain.pdf

TF0900061SN004ch1.txt

0900061

SN004

2

TF_DD_SN004_phase.pdf

TF0900061SN004ch2_rev.txt

TF0900061SN004ch2.txt

0900061

SN004

3

TF0900061SN004ch3.txt

0900061

SN004

4

TF0900061SN004ch4_rev.txt

TF0900061SN004ch4.txt

60Hzの除去性能

AntiAliasing(=AntiImaging)Filterの測定

AntiAliasingFilterは、高周波の映り込みを避けるためのもので、AntiImaging filterと同じである。 現在Differential Driverと同じ基盤を使っているので、基盤番号はDDと同じになる。 よって、SNは005, 006としておく。伝達関数の測定は、HP3562Aを用いて行った。 今回は、65kHz付近の周波数分解能は600Hzほどで測定を行っているので、gain@65535Hzは、実際には65501Hzの値を読んでいる。 notch周波数の精度もその程度である。

型番

基盤番号

入力ch

グラフ

テキストデータ

notch freq.

gain @ 65536Hz

0900061

SN005

1

TF_AA_SN005_gain.pdf

TF0900061SN005ch1.txt

68.391kHz

-72.9dB

0900061

SN005

2

TF_AA_SN005_phase.pdf

TF0900061SN005ch2.txt

70.794kHz

-70.2dB

0900061

SN005

3

TF0900061SN005ch3.txt

70.794kHz

-71.3dB

0900061

SN005

4

TF0900061SN005ch4.txt

70.794kHz

-71.6dB

0900061

SN006

1

TF_AA_SN006_gain.pdf

TF0900061SN006ch1.txt

68.391kHz

-72.9dB

0900061

SN006

2

TF_AA_SN006_phase.pdf

TF0900061SN006ch2.txt

68.391kHz

-73.0dB

0900061

SN006

3

TF0900061SN006ch3.txt

70.794kHz

-70.9dB

0900061

SN006

4

TF0900061SN006ch4.txt

70.794kHz

-71.8dB

Differential Receiverの測定

DRの各チャンネルが大きな問題なく動いているかどうかを確認するために、Hewlett Packardの3562Aを用いて、伝達関数の測定を行った。
SN001のch2は、抵抗が一本抜けていたため、当初ゲインが半分であった。

型番

基盤番号

入力チャンネル

グラフ

テキストデータ

古いデータ(あれば)

0900067

SN001

1

TF_DR_SN001_gain_rev.pdf

TF0900067SN001ch1.txt

0900067

SN001

2

TF_DR_SN001_phase_rev.pdf

TF0900067SN001ch2_rev.txt

TF0900067SN001ch2.txt

0900067

SN001

3

TF0900067SN001ch3.txt

0900067

SN001

4

TF0900067SN001ch4.txt

0900067

SN002

1

TF_DR_SN002_gain.pdf

TF0900067SN002ch1.txt

0900067

SN002

2

TF_DR_SN002_phase.pdf

TF0900067SN002ch2.txt

0900067

SN002

3

TF0900067SN002ch3.txt

0900067

SN002

4

TF0900067SN002ch4.txt

0900067

SN003

1

TF_DR_SN003_gain.pdf

TF0900067SN003ch1.txt

0900067

SN003

2

TF_DR_SN003_phase.pdf

TF0900067SN003ch2.txt

0900067

SN003

3

TF0900067SN003ch3.txt

0900067

SN003

4

TF0900067SN003ch4.txt

0900067

SN004

1

TF_DR_SN004_gain.pdf

TF0900067SN004ch1.txt

0900067

SN004

2

TF_DR_SN004_phase.pdf

TF0900067SN004ch2.txt

0900067

SN004

3

TF0900067SN004ch3.txt

0900067

SN004

4

TF0900067SN004ch4.txt

遅延時間とカップリングの評価

  • DACからの出力を、D-SUB 9pinでADCにつないで、遅延時間とカップリングの評価を行った。 DACとADCの比から、低周波で-6dBとなる。

出力ch

グラフ(gain)

グラフ(phase)

ETMX

ETMX-DAC-ADC-ALL_gain.pdf

ETMX-DAC-ADC-ALL_phase.pdf

ETMY

ETMY-DAC-ADC-ALL_gain.pdf

ETMY-DAC-ADC-ALL_phase.pdf

SPI_RM_L

SPI_RM_L-DAC-ADC-ALL_gain.pdf

SPI_RM_L-DAC-ADC-ALL_phase.pdf

SPI_RM_R

SPI_RM_R-DAC-ADC-ALL_gain.pdf

SPI_RM_R-DAC-ADC-ALL_phase.pdf

CLIO/Tasks/DigitalControl/PerformanceTest (last edited 2011-07-04 16:12:43 by NaokoOhishi)