2079
Comment:
|
11049
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
目標:CLIOのデジタル制御システムに関わる回路類の性能評価(評価基準の指定)と評価データ蓄積方法の決定。<<BR>> 2010年6月の評価開始以後、LCGTに予算がついたため、LCGTデジタル用の仕様書作成も目的に含める。<<BR>> 担当:大石、斉藤 <<BR>> supervisor:宮川、辰巳ほか<<BR>> 参考:[[CLIO/ Tasks/ DigitalControl/ Caltech_setup|2.辰巳からの要望 の3]]<<BR>> <<TableOfContents>> |
|
Line 5: | Line 13: |
CLIOのデジタル制御システムは、とりあえず以下のように構成される。 | CLIOのアナログ-デジタル間は、2010年6月現在、以下のように構成されている。 |
Line 8: | Line 16: |
(white/dewhite filterは雑音レベルを気にするときのみ使用。)<<BR>> 2010年5月現在、CLIOでは、AA, DD, DRの3種類の回路を試作済 |
近日中に、以下のように変更予定。 ||Analog input ||>||Differential Driver||>||(Whitening filter)||>||AntiAliasing Filter||>||ADC||>||Digital Control||>||DAC||>||AntiImaging Filter(=AA)||>||Differential Receiver||>||(Dewhitening filter)||>||Analog output|| CLIO内は電源60Hzの振幅が大きく、これがdynamic rangeを制限する可能性があるため、初段に差動入力回路を入れる。<<BR>> white/dewhite filterは雑音レベルを気にするときのみ使用。<<BR>> 2010年5月現在、CLIOでは、AA, DD, DRの3種類の回路を試作済 |
Line 12: | Line 24: |
今後、CLIOの感度を出していく基礎データとして、これらの構成要素の特性を調べ、記録しておく。 | 今後、CLIOの感度を出していくための基礎データとして、これらの構成要素の特性を調べ、記録していく。 |
Line 14: | Line 26: |
* デジタル回路の特性(伝達関数、雑音レベルなど)の測定には、diaguuiを用いる。 | * デジタル回路の特性(伝達関数、雑音レベル)の測定には、diaguuiを用いる。[[CLIO/Tasks/DigitalControl/PerformanceTest/Diaggui|Diagguiのつかいかた]]<<BR>> |
Line 16: | Line 28: |
== diagguiのつかいかた == | == ADCの評価 == ADC(Analog-to-Digital Converter)は、アナログ信号をデジタルに変換するもので、general standards社の [[http://www.generalstandards.com/view-products.php?product=pmc66-16ai64ssa| PMC66-16AI64SSA-64-50MHz-MEM]](16bit, 64 single channel(=32 differential input), +/-10V(40Vp-p for differential) )を用いている。<<BR>> ADCの評価は、入力信号に対する応答、雑音レベルの2つの観点から行う。 === calibration === デジタル信号の1LSB(Least Significant Bit)は、rangeをビット数で割ったものになり、 {{{ 1LSB=20V/16bit=20/65536=0.305mV }}} 入力においてこれより小さな値を識別することはできない(ただし、digital内部での処理は32bitで行われる)。<<BR>> ADCのchannel 5-8において、入力信号が、Digital内部での値と整合するかのチェックを行った。 AgilentのFunction Generatorから、+/-0.5Vの矩形波を入力し、振幅のカウント数が整合しているか測定した。 基準値は {{{ 1V/1LSB=3276.8 }}} で、誤差を%で併記した。 ||channel||input +0.5V ||input -0.5V || amplitude || offset || || ch5 || 1638.25 || -1626.06 || 3264.31 (0.4%) || 12.19 (0.4%) || || ch6 || 1637.54 || -1627.01 || 3264.55 (0.4%) || 10.53 (0.3%) || || ch7 || 1637.93 || -1626.78 || 3264.71 (0.4%) || 11.15 (0.3%) || || ch8 || 1639.37 || -1623.97 || 3263.34 (0.4%) || 15.40 (0.5%) || これらの振幅とオフセットは入力の信号によって若干変化する。<<BR>> この測定結果をふまえて、較正値の誤差範囲を1%以内と定める。これより誤差の大きなチャンネルがあれば使用を避ける。 === ADCの雑音スペクトル測定 === まずADCの雑音を測定する。入力の差動入力をshortして、diagguiで測定した。[[attachment:input_shorted_ADC_powerspec_ch5_8.pdf]] == DACの評価 == ADC同様、デジタル入力からアナログ出力への較正と、雑音を評価する。 === calibration === === DACの雑音スペクトル測定 === HP3562Aをもちいて、DACの雑音スペクトルを測定する。設定は、POWER SPECモード、入力coupling AC、linear specで、Hanning window、Avg:10(stable mean)、周波数は100Hz(LF)と100kHz(HF)で測定した。表示はrms V/sqrt(Hz)。 入力状態を3種類変えて、DRの出力スペクトルを測定した。<<BR>> * AI(SN006)の入力をshortして、出力をDR(SN002)に接続し、その出力をみる。 * * |
Line 18: | Line 77: |
portaで {{{ $diaggui & }}} とすると、Diagnostic test toolsという画面が現れる。4つのtab(Input, Measurement, Excitation, Result)のうち、通常はMeausrementのtabが選択されています。<<BR>> 次の、Measurement boxの中で、 * 雑音レベルの測定をするときは、Fourier Powerを選択します。 * 伝達関数の測定をするときは、Swept Sine Responseを選択します。<<BR>> === Fourier Powerを選択した場合 === Measurement Channels boxで、Channel 0 to 19 が選択されており、たとえば、ドロップダウンリストから、選択してチェックボックスをチェックする。 {{attachment:diaggui_select.png}} |
|| ||shortedAI(SN006)>DR(SN002)||ZeroFilledDAC>AI(SN006)>DR(SN002)|| ||グラフ||[[attachment:PS_SAI006_DR002.pdf]]||[[attachment:PS_ZDAC_AI006_DR002.pdf]]|| ||ch1||[[attachment:PS_SAI006_DR002_ch1_LF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch1_LF.txt]]|| || ||[[attachment:PS_SAI006_DR002_ch1_HF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch1_HF.txt]]|| ||ch2||[[attachment:PS_SAI006_DR002_ch2_LF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch2_LF.txt]]|| || ||[[attachment:PS_SAI006_DR002_ch2_HF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch2_HF.txt]]|| ||ch3||[[attachment:PS_SAI006_DR002_ch3_LF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch3_LF.txt]]|| || ||[[attachment:PS_SAI006_DR002_ch3_HF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch3_HF.txt]]|| ||ch4||[[attachment:PS_SAI006_DR002_ch4_LF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch4_LF.txt]]|| || ||[[attachment:PS_SAI006_DR002_ch4_HF.txt]]||[[attachment:PS_ZDAC_AI006_DR002_ch4_HF.txt]]|| |
Line 31: | Line 89: |
diagguiなどで用いられているLSCなどの略語は、 [[attachment:LIGO-M080375-V7 (Abbreviations And Acronyms).pdf|pdf]]や [[http://gw.icrr.u-tokyo.ac.jp/JGWwiki/LCGT/subgroup/ifo/ISC/Terminology|麻生さんの記事]]を参照してください。 |
== Differential Driverの評価 == |
Line 34: | Line 91: |
DDを入れる主目的は、60Hzなどの雑音の除去である。 各チャンネルが大きな問題なく動いているかどうかを確認するために、Hewlett Packardの3562Aを用いて、伝達関数の測定を行った。出力側はSR560で取った。位相の反転は要確認。 スペアナからのデータの取り出しについては、[[CLIO/SiteInfo/operation/DataTransfer |こちら]]を参照。<<BR>> ||型番||基盤番号||入力チャンネル||グラフ||テキストデータ||古いデータ(あれば)|| ||0900061||SN001||1||[[attachment:TF_DD_SN001_gain.pdf]]||[[attachment:TF0900061SN001ch1.txt]]|||| ||0900061||SN001||2||[[attachment:TF_DD_SN001_phase.pdf]]||[[attachment:TF0900061SN001ch2.txt]]|||| ||0900061||SN001||3|| ||[[attachment:TF0900061SN001ch3.txt]]|||| ||0900061||SN001||4|| ||[[attachment:TF0900061SN001ch4.txt]]|||| ||0900061||SN002||1||[[attachment:TF_DD_SN002_gain.pdf]] ||[[attachment:TF0900061SN002ch1_rev.txt]]||[[attachment:TF0900061SN002ch1.txt]]|| ||0900061||SN002||2||[[attachment:TF_DD_SN002_phase.pdf]] ||[[attachment:TF0900061SN002ch2_rev.txt]]||[[attachment:TF0900061SN002ch2.txt]]|| ||0900061||SN002||3|| ||[[attachment:TF0900061SN002ch3.txt]]|||| ||0900061||SN002||4|| ||[[attachment:TF0900061SN002ch4.txt]]|||| ||0900061||SN003||1||[[attachment:TF_DD_SN003_gain.pdf]] ||[[attachment:TF0900061SN003ch1_rev.txt]]||[[attachment:TF0900061SN003ch1.txt]]|| ||0900061||SN003||2||[[attachment:TF_DD_SN003_phase.pdf]] ||[[attachment:TF0900061SN003ch2.txt]]|||| ||0900061||SN003||3|| ||[[attachment:TF0900061SN003ch3.txt]]|||| ||0900061||SN003||4|| ||[[attachment:TF0900061SN003ch4.txt]]|||| ||0900061||SN004||1||[[attachment:TF_DD_SN004_gain.pdf]] ||[[attachment:TF0900061SN004ch1.txt]]|||| ||0900061||SN004||2||[[attachment:TF_DD_SN004_phase.pdf]] ||[[attachment:TF0900061SN004ch2_rev.txt]]||[[attachment:TF0900061SN004ch2.txt]]|| ||0900061||SN004||3|| ||[[attachment:TF0900061SN004ch3.txt]]|||| ||0900061||SN004||4|| ||[[attachment:TF0900061SN004ch4_rev.txt]]||[[attachment:TF0900061SN004ch4.txt]]|| === 60Hzの除去性能 === == AntiAliasing(=AntiImaging)Filterの測定 == AntiAliasingFilterは、高周波の映り込みを避けるためのもので、AntiImaging filterと同じである。 現在Differential Driverと同じ基盤を使っているので、基盤番号はDDと同じになる。 よって、SNは005, 006としておく。伝達関数の測定は、HP3562Aを用いて行った。 今回は、65kHz付近の周波数分解能は600Hzほどで測定を行っているので、gain@65535Hzは、実際には65501Hzの値を読んでいる。 notch周波数の精度もその程度である。 ||型番||基盤番号||入力ch||グラフ||テキストデータ||notch freq.||gain @ 65536Hz|| ||0900061||SN005||1||[[attachment:TF_AA_SN005_gain.pdf]]||[[attachment:TF0900061SN005ch1.txt]]||68.391kHz||-72.9dB|| ||0900061||SN005||2||[[attachment:TF_AA_SN005_phase.pdf]]||[[attachment:TF0900061SN005ch2.txt]]||70.794kHz||-70.2dB|| ||0900061||SN005||3|| ||[[attachment:TF0900061SN005ch3.txt]]||70.794kHz||-71.3dB|| ||0900061||SN005||4|| ||[[attachment:TF0900061SN005ch4.txt]]||70.794kHz||-71.6dB|| ||0900061||SN006||1||[[attachment:TF_AA_SN006_gain.pdf]]||[[attachment:TF0900061SN006ch1.txt]]||68.391kHz||-72.9dB|| ||0900061||SN006||2||[[attachment:TF_AA_SN006_phase.pdf]]||[[attachment:TF0900061SN006ch2.txt]]||68.391kHz||-73.0dB|| ||0900061||SN006||3|| ||[[attachment:TF0900061SN006ch3.txt]]||70.794kHz||-70.9dB|| ||0900061||SN006||4|| ||[[attachment:TF0900061SN006ch4.txt]]||70.794kHz||-71.8dB|| == Differential Receiverの測定 == DRの各チャンネルが大きな問題なく動いているかどうかを確認するために、Hewlett Packardの3562Aを用いて、伝達関数の測定を行った。<<BR>> SN001のch2は、抵抗が一本抜けていたため、当初ゲインが半分であった。 ||型番||基盤番号||入力チャンネル||グラフ||テキストデータ||古いデータ(あれば)|| ||0900067||SN001||1||[[attachment:TF_DR_SN001_gain_rev.pdf]]||[[attachment:TF0900067SN001ch1.txt]]|||| ||0900067||SN001||2||[[attachment:TF_DR_SN001_phase_rev.pdf]]||[[attachment:TF0900067SN001ch2_rev.txt]]||[[attachment:TF0900067SN001ch2.txt]]|| ||0900067||SN001||3|| ||[[attachment:TF0900067SN001ch3.txt]]|||| ||0900067||SN001||4|| ||[[attachment:TF0900067SN001ch4.txt]]|||| ||0900067||SN002||1||[[attachment:TF_DR_SN002_gain.pdf]]||[[attachment:TF0900067SN002ch1.txt]]|||| ||0900067||SN002||2||[[attachment:TF_DR_SN002_phase.pdf]]||[[attachment:TF0900067SN002ch2.txt]]|||| ||0900067||SN002||3|| ||[[attachment:TF0900067SN002ch3.txt]]|||| ||0900067||SN002||4|| ||[[attachment:TF0900067SN002ch4.txt]]|||| ||0900067||SN003||1||[[attachment:TF_DR_SN003_gain.pdf]]||[[attachment:TF0900067SN003ch1.txt]]|||| ||0900067||SN003||2||[[attachment:TF_DR_SN003_phase.pdf]]||[[attachment:TF0900067SN003ch2.txt]]|||| ||0900067||SN003||3|| ||[[attachment:TF0900067SN003ch3.txt]]|||| ||0900067||SN003||4|| ||[[attachment:TF0900067SN003ch4.txt]]|||| == システム評価 == === 遅延時間の測定 === === カップリング測定 === カップリングの測定は、ADC/DACでまず行う。 |
PerformanceTest
目標:CLIOのデジタル制御システムに関わる回路類の性能評価(評価基準の指定)と評価データ蓄積方法の決定。
2010年6月の評価開始以後、LCGTに予算がついたため、LCGTデジタル用の仕様書作成も目的に含める。
担当:大石、斉藤
supervisor:宮川、辰巳ほか
参考:2.辰巳からの要望 の3
Contents
CLIO Digital
- CLIOのアナログ-デジタル間は、2010年6月現在、以下のように構成されている。
Analog input |
> |
(Whitening Filter) |
> |
Differential driver |
> |
AntiAliasing Filter |
> |
ADC |
> |
Digital control |
> |
DAC |
> |
AntiImaging Filter(=AA) |
> |
Differential Receiver |
> |
(Dewhitening Filter) |
> |
Analog output |
- 近日中に、以下のように変更予定。
Analog input |
> |
Differential Driver |
> |
(Whitening filter) |
> |
AntiAliasing Filter |
> |
ADC |
> |
Digital Control |
> |
DAC |
> |
AntiImaging Filter(=AA) |
> |
Differential Receiver |
> |
(Dewhitening filter) |
> |
Analog output |
CLIO内は電源60Hzの振幅が大きく、これがdynamic rangeを制限する可能性があるため、初段に差動入力回路を入れる。
white/dewhite filterは雑音レベルを気にするときのみ使用。
2010年5月現在、CLIOでは、AA, DD, DRの3種類の回路を試作済 (タスクリスト参照)。
今後、CLIOの感度を出していくための基礎データとして、これらの構成要素の特性を調べ、記録していく。- アナログ回路の特性(伝達関数、雑音レベル)の測定には、スペアナを、
デジタル回路の特性(伝達関数、雑音レベル)の測定には、diaguuiを用いる。Diagguiのつかいかた
ADCの評価
ADC(Analog-to-Digital Converter)は、アナログ信号をデジタルに変換するもので、general standards社の PMC66-16AI64SSA-64-50MHz-MEM(16bit, 64 single channel(=32 differential input), +/-10V(40Vp-p for differential) )を用いている。
ADCの評価は、入力信号に対する応答、雑音レベルの2つの観点から行う。
calibration
- デジタル信号の1LSB(Least Significant Bit)は、rangeをビット数で割ったものになり、
1LSB=20V/16bit=20/65536=0.305mV
入力においてこれより小さな値を識別することはできない(ただし、digital内部での処理は32bitで行われる)。
ADCのchannel 5-8において、入力信号が、Digital内部での値と整合するかのチェックを行った。 AgilentのFunction Generatorから、+/-0.5Vの矩形波を入力し、振幅のカウント数が整合しているか測定した。 基準値は1V/1LSB=3276.8
で、誤差を%で併記した。channel
input +0.5V
input -0.5V
amplitude
offset
ch5
1638.25
-1626.06
3264.31 (0.4%)
12.19 (0.4%)
ch6
1637.54
-1627.01
3264.55 (0.4%)
10.53 (0.3%)
ch7
1637.93
-1626.78
3264.71 (0.4%)
11.15 (0.3%)
ch8
1639.37
-1623.97
3263.34 (0.4%)
15.40 (0.5%)
これらの振幅とオフセットは入力の信号によって若干変化する。
この測定結果をふまえて、較正値の誤差範囲を1%以内と定める。これより誤差の大きなチャンネルがあれば使用を避ける。
ADCの雑音スペクトル測定
まずADCの雑音を測定する。入力の差動入力をshortして、diagguiで測定した。input_shorted_ADC_powerspec_ch5_8.pdf
DACの評価
- ADC同様、デジタル入力からアナログ出力への較正と、雑音を評価する。
calibration
DACの雑音スペクトル測定
HP3562Aをもちいて、DACの雑音スペクトルを測定する。設定は、POWER SPECモード、入力coupling AC、linear specで、Hanning window、Avg:10(stable mean)、周波数は100Hz(LF)と100kHz(HF)で測定した。表示はrms V/sqrt(Hz)。 入力状態を3種類変えて、DRの出力スペクトルを測定した。
- AI(SN006)の入力をshortして、出力をDR(SN002)に接続し、その出力をみる。
|
shortedAI(SN006)>DR(SN002) |
ZeroFilledDAC>AI(SN006)>DR(SN002) |
グラフ |
||
ch1 |
||
|
||
ch2 |
||
|
||
ch3 |
||
|
||
ch4 |
||
|
Differential Driverの評価
- DDを入れる主目的は、60Hzなどの雑音の除去である。 各チャンネルが大きな問題なく動いているかどうかを確認するために、Hewlett Packardの3562Aを用いて、伝達関数の測定を行った。出力側はSR560で取った。位相の反転は要確認。
スペアナからのデータの取り出しについては、こちらを参照。
型番 |
基盤番号 |
入力チャンネル |
グラフ |
テキストデータ |
古いデータ(あれば) |
0900061 |
SN001 |
1 |
|||
0900061 |
SN001 |
2 |
|||
0900061 |
SN001 |
3 |
|
||
0900061 |
SN001 |
4 |
|
||
0900061 |
SN002 |
1 |
|||
0900061 |
SN002 |
2 |
|||
0900061 |
SN002 |
3 |
|
||
0900061 |
SN002 |
4 |
|
||
0900061 |
SN003 |
1 |
|||
0900061 |
SN003 |
2 |
|||
0900061 |
SN003 |
3 |
|
||
0900061 |
SN003 |
4 |
|
||
0900061 |
SN004 |
1 |
|||
0900061 |
SN004 |
2 |
|||
0900061 |
SN004 |
3 |
|
||
0900061 |
SN004 |
4 |
|
60Hzの除去性能
AntiAliasing(=AntiImaging)Filterの測定
AntiAliasingFilterは、高周波の映り込みを避けるためのもので、AntiImaging filterと同じである。 現在Differential Driverと同じ基盤を使っているので、基盤番号はDDと同じになる。 よって、SNは005, 006としておく。伝達関数の測定は、HP3562Aを用いて行った。 今回は、65kHz付近の周波数分解能は600Hzほどで測定を行っているので、gain@65535Hzは、実際には65501Hzの値を読んでいる。 notch周波数の精度もその程度である。
型番 |
基盤番号 |
入力ch |
グラフ |
テキストデータ |
notch freq. |
gain @ 65536Hz |
0900061 |
SN005 |
1 |
68.391kHz |
-72.9dB |
||
0900061 |
SN005 |
2 |
70.794kHz |
-70.2dB |
||
0900061 |
SN005 |
3 |
|
70.794kHz |
-71.3dB |
|
0900061 |
SN005 |
4 |
|
70.794kHz |
-71.6dB |
|
0900061 |
SN006 |
1 |
68.391kHz |
-72.9dB |
||
0900061 |
SN006 |
2 |
68.391kHz |
-73.0dB |
||
0900061 |
SN006 |
3 |
|
70.794kHz |
-70.9dB |
|
0900061 |
SN006 |
4 |
|
70.794kHz |
-71.8dB |
Differential Receiverの測定
DRの各チャンネルが大きな問題なく動いているかどうかを確認するために、Hewlett Packardの3562Aを用いて、伝達関数の測定を行った。
SN001のch2は、抵抗が一本抜けていたため、当初ゲインが半分であった。
型番 |
基盤番号 |
入力チャンネル |
グラフ |
テキストデータ |
古いデータ(あれば) |
0900067 |
SN001 |
1 |
|||
0900067 |
SN001 |
2 |
|||
0900067 |
SN001 |
3 |
|
||
0900067 |
SN001 |
4 |
|
||
0900067 |
SN002 |
1 |
|||
0900067 |
SN002 |
2 |
|||
0900067 |
SN002 |
3 |
|
||
0900067 |
SN002 |
4 |
|
||
0900067 |
SN003 |
1 |
|||
0900067 |
SN003 |
2 |
|||
0900067 |
SN003 |
3 |
|
||
0900067 |
SN003 |
4 |
|
システム評価
遅延時間の測定
カップリング測定
カップリングの測定は、ADC/DACでまず行う。