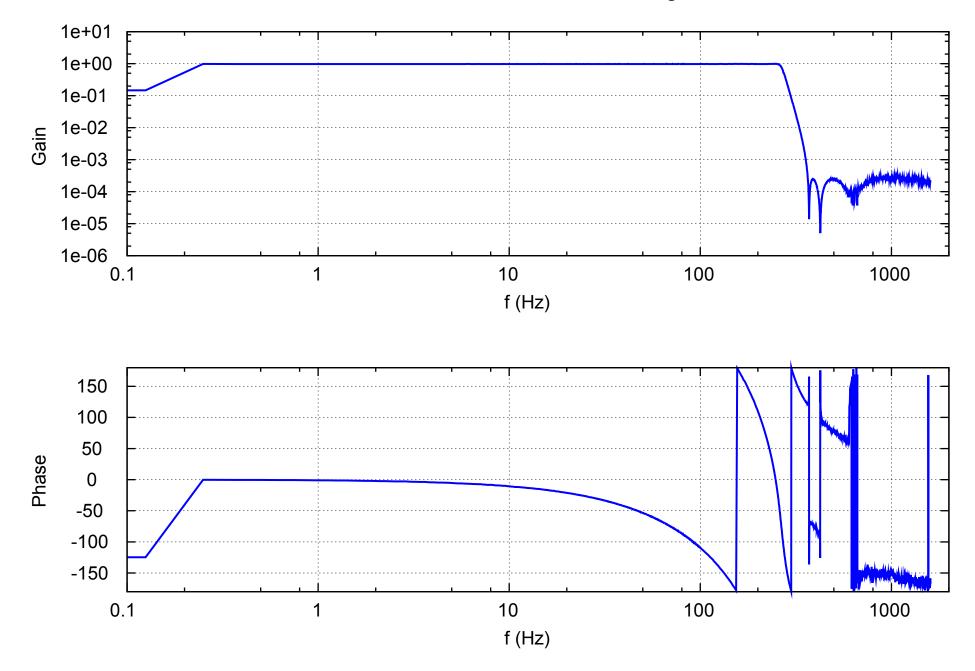
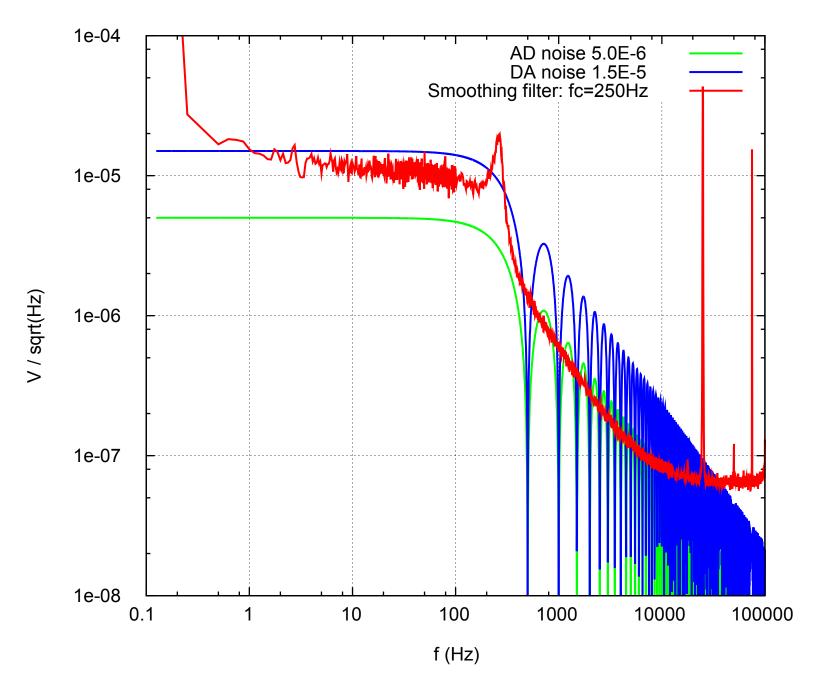


回路の調整方法について


1. ジャンパーピン (JP1-3) を全て外す。

- 2 . チェックピン (以下 TC) の +8V をオシロスコープで測定しつつ ジャンパーピン JP1 の横にある可変抵抗を調整。 調整後、JP1 にジャンパーピンを装着
- 3.TC 8V を測定しつつ、JP2 の横にある可変抵抗を調整後、JP2 を装着。
- 4.TC +5V を測定し +5V が出力されていることを確認後、JP3 を装着。
- 5. TC CLK をオシロスコープと Frequency Counter で測定し、25kHz に調整。 クロック波形は Duty ratio 50% の TTL レベル信号
- 6. 最後に LTC1064-1 をソケットに装着し、伝達関数を測定。



Transfer Function of Smoothing Filter

Output Noise Spectrum

LTC1064-1

^{OGY} Low Noise, 8th Order, Clock Sweepable Elliptic Lowpass Filter

FEATURES

- 8th Order Filter in a 14-Pin Package
- No External Components
- 100:1 Clock to Center Ratio
- 150µV_{RMS} Total Wideband Noise
- 0.03% THD or Better
- 50kHz Maximum Corner Frequency
- Operates from ±2.37V to ±8V Power Supplies
- Passband Ripple Guaranteed Over Full Military Temperature Range

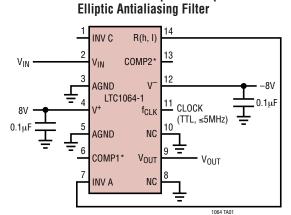
APPLICATIONS

- Antialiasing Filters
- Telecom PCM Filters

DESCRIPTION

The LTC[®]1064-1 is an 8th order, clock sweepable elliptic (Cauer) lowpass switched capacitor filter. The passband ripple is typically ± 0.15 dB, and the stopband attenuation at 1.5 times the cutoff frequency is 68dB or more.

An external TTL or CMOS clock programs the value of the filter's cutoff frequency. The clock to cutoff frequency ratio is 100:1.

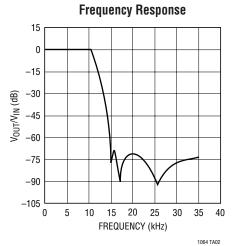

No external components are needed for cutoff frequencies up to 20kHz. For cutoff frequencies over 20kHz two low value capacitors are required to maintain passband flatness. The LTC1064-1 features low wideband noise and low harmonic distortion even for input voltages up to $3V_{RMS}$. In fact the LTC1064-1 overall performance completes with equivalent multiple op amp RC active realizations.

The LTC1064-1 is available in a 14-pin DIP or 16-pin surface mounted SW package.

The LTC1064-1 is pin compatible with the LTC1064-2.

T, LTC and LT are registered trademarks of Linear Technology Corporation.

TYPICAL APPLICATION



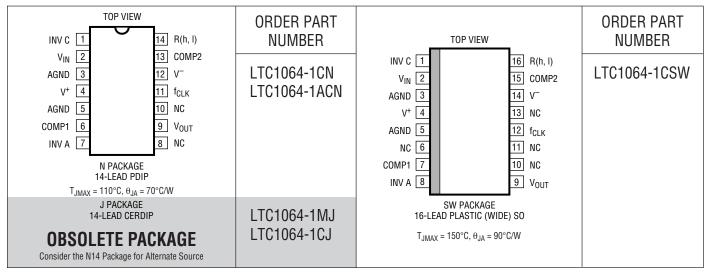
8th Order Clock Sweepable Lowpass

NOTE: THE POWER SUPPLIES SHOULD BE BYPASSED BY A $0.1 \mu\text{F}$ CAPACITOR CLOSE TO THE PACKAGE.

FOR SERVO OFFSET NULLING APPLICATIONS, PIN 1 IS THE 2ND STAGE SUMMING JUNCTION.

FOR CUTOFF FREQUENCY ABOVE 20kHz, USE COMPENSATION CAPACITORS (5pF TO 56pF) BETWEEN PIN 13 AND PIN 1 AND PIN 6 AND PIN 7.

8th ORDER CLOCK SWEEPABLE LOWPASS ELLIPTIC ANTIALIASING FILTER MAINTAINS, FOR 0.1Hz $\leq f_{CUTOFF} \leq 10$ kHz, A ±0.15dB PASSBAND RIPPLE AND 72dB STOPBAND ATTENUATION AT 1.5 $\times f_{CUTOFF}$. TOTAL WIDEBAND NOISE = 150 μ V_{RMS}, THD = 0.03% FOR V_{IN} = 1V_{RMS}


LINEAR TECHNOLOGY

ABSOLUTE MAXIMUM RATINGS (Note 1)

Operating Temperature Range

LTC1064-1M (**OBSOLETE**) -55°C to 125°C LTC1064-1C/AC -40°C to 85°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

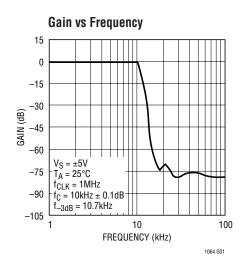
ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

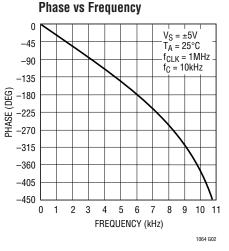
temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_S = \pm 7.5V$, $f_{CLK} = 1$ MHz, R1 = 10k, C1 = 10pF, TTL or CMOS clock input level unless otherwise specified.

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Passband Gain, LTC1064-1, 1A	Referenced to 0dB, 1Hz to 0.1f _C	•		±0.1	±0.35	dB
Gain TempCo				0.0002		dB/°C
Passband Edge Frequency, f _C				10 ± 1%		kHz
Gain at f _C LTC1064-1 LTC1064-1A	Referenced to Passband Gain	•	-1.25 -0.75		0.85 0.65	dB dB
–3dB Frequency				10.7		kHz
Passband Ripple (Note 1) LTC1064-1 LTC1064-1A	$0.1 f_C$ to $0.85 f_C$ Referenced to Passband Gain, Measured at 6.25 kHz and 8.5 kHz	•		±0.15 ±0.1	±0.32 ±0.19	dB dB
Ripple TempCo				0.0004		dB/°C
Stopband Attenuation LTC1064-1 LTC1064-1A	At 1.5f _C Referenced to 0dB	•	66 68	72 72		dB dB
Stopband Attenuation LTC1064-1 LTC1064-1A	At 2f _C Referenced to 0dB	•	67 68	72 72		dB dB

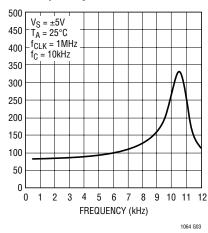
10641fa

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V_S = ±7.5V, f_{CLK} = 1MHz, R1 = 10k, C1 = 10pF, TTL or CMOS clock input level unless otherwise specified.

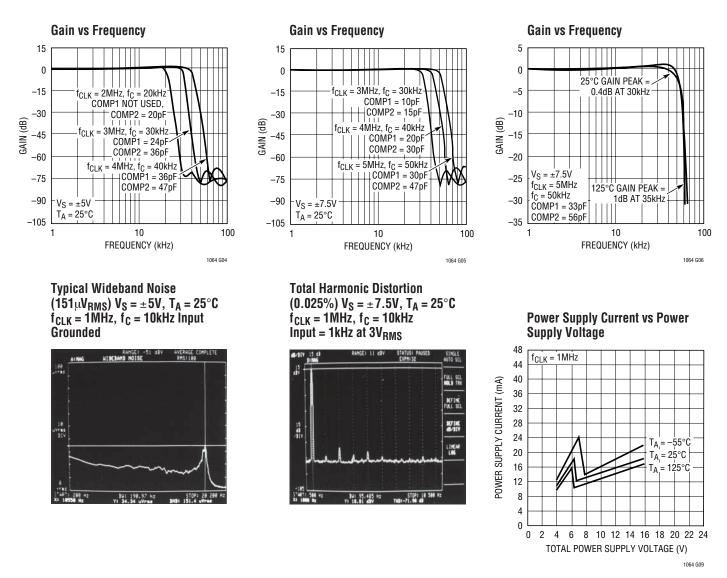

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Input Frequency Range			0		f _{CLK} /2	kHz
Output Voltage Swing and Operating Input Voltage Range	$V_{S} = \pm 2.37V$ $V_{S} = \pm 5V$ $V_{S} = \pm 7.5V$	•	±1 ±3 ±5			V V V
Total Harmonic Distortion	$V_S = \pm 5V$, Input = $1V_{RMS}$ at 1kHz $V_S = \pm 7.5V$, Input = $3V_{RMS}$ at 1kHz			0.015 0.03		% %
Wideband Noise	$V_S = \pm 5V$, Input = GND 1Hz to 999kHz $V_S = \pm 7.5V$, Input = GND 1Hz to 999kHz			150 165		μV _{RMS} μV _{RMS}
Output DC Offset LTC1064-1 LTC1064-1A Output DC Offset TempCo	$V_{\rm S}$ = ±7.5V, Pin 2 Grounded $V_{\rm S}$ = ±5V			50 50 –100	175 125	mV mV µV/°C
Input Impedance			10	20		kΩ
Output Impedance	f _{OUT} = 10kHz			2		Ω
Output Short-Circuit Current	Source/Sink			3/1		mA
Clock Feedthrough				200		μV _{RMS}
Maximum Clock Frequency	50% Duty Cycle, $V_S = \pm 7.5V$				5	MHz
Power Supply Current	V _S = ±2.37V	•		10	22	mA
	$V_S = \pm 5V$	•		12	23 26	mA mA
	$V_S = \pm 7.5 V$, f _{CLK} = 1MHz	•		16	28 32	mA mA
Power Supply Voltage Range		•	±2.37		±8	V


Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: For tighter specifications please contact LTC Marketing.


GROUP DELAY (µs)

TYPICAL PERFORMANCE CHARACTERISTICS



Group Delay

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS (Pin Numbers Refer to the 14-Pin Package)

COMP1, INV A, COMP2, INV C (Pins 1,6,7, and 13): For filter cutoff frequencies higher than 20kHz, in order to minimize the passband ripple, compensation capacitors should be added between Pin 6 and Pin 7 (COMP1) and Pin 1 and Pin 13 (COMP2). For COMP1 (COMP2), add 1pF (1.5pF) mica capacitor for each kHz increase in cutoff frequency above 20kHz. For more detail refer to Gain vs Frequency graphs.

V_{IN}, **V**_{OUT} (**Pins 2**, **9**): The input Pin 2 is connected to an 18k resistor tied to the inverting input of an op amp. Pin 2

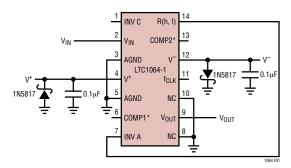
is protected against static discharge. The device's output, Pin 9, is the output of an op amp which can typically source/ sink 3mA/1mA. Although the internal op amps are unity gain stable, driving long coax cables is not recommended.

When testing the device for noise and distortion, the output, Pin 9, should be buffered (Figure 4). *The op amp power supply wire (or trace) should be connected directly to the power source.*

AGND (Pins 3, 5): For dual supply operation these pins should be connected to a ground plane. For single supply 10641fa

PIN FUNCTIONS (Pin Numbers Refer to the 14-Pin Package)

operation both pins should be tied to one half supply (Figure 2). Also Pin 8 and Pin 10, although they are not internally connected should be tied to analog ground or system ground. This improves the clock feedthrough performance.


V⁺, **V⁻** (Pins 4, 12): The V⁺ and V⁻ pins should be bypassed with a 0.1μ F capacitor to an adequate analog ground. Low noise, nonswitching power supplies are recommended. *To avoid latchup when the power supplies exhibit high turn-on transients, a 1N5817 Schottky diode should be added from the V⁺ and V⁻ pins to ground* (*Figure 1*).

INV A, R(h, I) (Pins 7, 14): A very short connection between Pin 14 and Pin 7 is recommended. This connection should be preferably done under the IC package. In a

breadboard, use a one inch, or less, shielded coaxial cable; the shield should be grounded. In a PC board, use a one inch trace or less; surround the trace by a ground plane.

NC (Pins 8, 10): The "no connection" pins preferably should be grounded.

f_{CLK} (Pin 11): For \pm 5V supplies the logic threshold level is 1.4V. For \pm 8V and 0V to 5V supplies the logic threshold levels are 2.2V and 3V respectively. The logic threshold levels vary \pm 100mV over the full military temperature range. The recommended duty cycle of the input clock is 50% although for clock frequencies below 500kHz the clock "on" time can be as low as 200ns. The maximum clock frequency for \pm 5V supplies is 4MHz. For \pm 7V supplies and above, the maximum clock frequency is 5MHz. Do not allow the clock levels to exceed the power supplies. For clock level shifting (see Figure 3).

TYPICAL APPLICATIONS

Figure 1. Using Schottky Diodes to Protect the IC from Power Supply Spikes

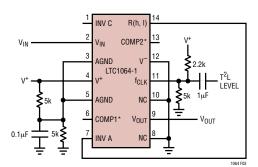


Figure 3. Level Shifting the Input T^2L Clock for Single Supply Operation, V+ >6V.

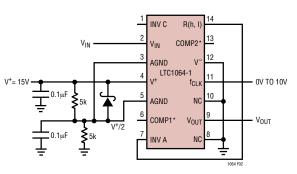
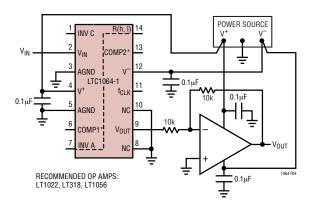
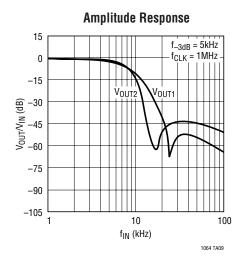


Figure 2. Single Supply Operation. If Fast Power Up or Down Transients are Expected, Use a 1N5817 Schottky Diode Between Pin 4 and Pin 5.

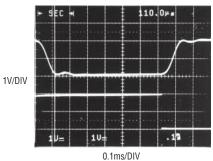


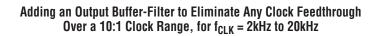

Figure 4. Buffering the Filter Output. The Buffer Op Amp Should Not Share the LTC1064-1 Power Lines.

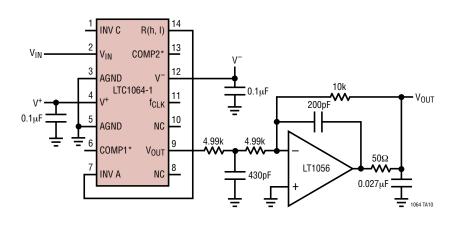
10641fa

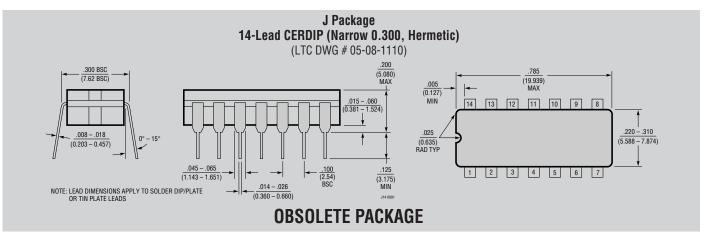
TYPICAL APPLICATIONS

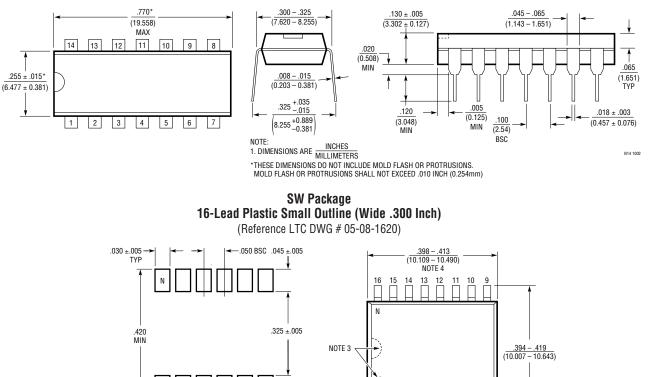
С łŀ \sim 47.5k INV C R(h, I) 2 LT1056 13 V_{OUT1} COMP2³ VIN V_{IN1} 3 12 AGND V LTC1064-1 <u>11</u> f_{CLK} = 200 0.1µF V+ fclk T × f_{-3dB} 0.1µF 10 NC AGND VOUT COMP1* V_{OUT2} <u>5</u> (μF) INV A NC C f_3dB **Å**^{47.5k} 1064 TA06 OUTPUT1 WIDEBAND NOISE: $50\mu V_{RMS}$ OUTPUT2 WIDEBAND NOISE: $110 \mu V_{RMS}$ V_{IN2}

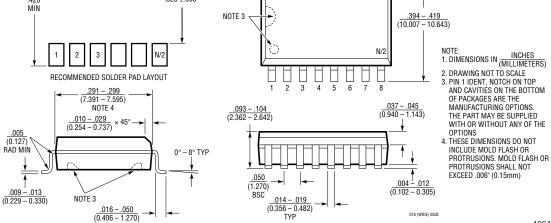

Transitional Elliptic-Bessel Dual 5th Order Lowpass Filter





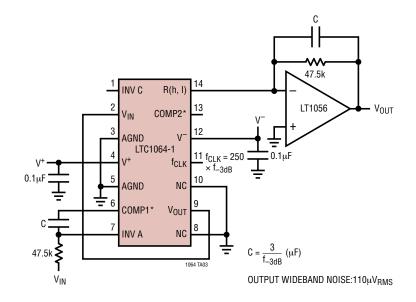


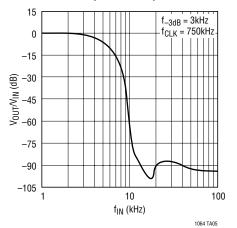




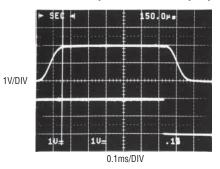
PACKAGE DESCRIPTION

N Package 14-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)




Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

TYPICAL APPLICATION



Transitional Elliptic-Bessel 10th Order Lowpass Filter

Amplitude Response

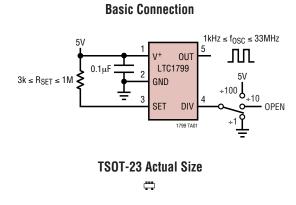
Transient Response to a 2V Step Input

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1069-1	8th Order Elliptic Lowpass	S0-8 Package, Low Power
LTC1069-6	Single Supply, 8th Order Elliptic Lowpass	S0-8 Package, Very Low Power
LTC1569-6	DC Accurate, 10th Order, Lowpass	Internal Precision Clock, Low Power
LTC1569-7	DC Accurate, 10th Order, Lowpass	Internal Precision Clock, S0-8 Package

LTC1799

FEATURES

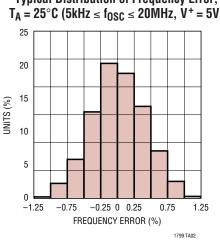

- One External Resistor Sets the Frequency
- Fast Start-Up Time: <1ms
- 1kHz to 33MHz Frequency Range
- Frequency Error ≤1.5% 5kHz to 20MHz $(T_{A} = 25^{\circ}C)$
- Frequency Error ≤ 2% 5kHz to 20MHz $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C)$
- ±40ppm/°C Temperature Stability
- 0.05%/V Supply Stability
- 50% ±1% Duty Cycle 1kHz to 2MHz
- 50% ±5% Duty Cycle 2MHz to 20MHz
- 1mA Typical Supply Current
- 100Ω CMOS Output Driver
- Operates from a Single 2.7V to 5.5V Supply
- Low Profile (1mm) SOT-23 (ThinSOT[™] Package)

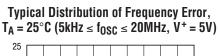
APPLICATIONS

- Low Cost Precision Oscillator
- Charge Pump Driver
- Switching Power Supply Clock Reference
- Clocking Switched Capacitor Filters
- Fixed Crystal Oscillator Replacement
- Ceramic Oscillator Replacement
- Small Footprint Replacement for Econ Oscillators

T, LTC and LT are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. ThinSOT is a trademark of Linear Technology Corporation. Protected by U.S. Patents including 6342817 and 6614313.

TYPICAL APPLICATION

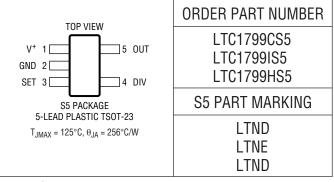

1kHz to 33MHz Resistor Set SOT-23 Oscillator


DESCRIPTION

The LTC[®]1799 is a precision oscillator that is easy to use and occupies very little PC board space. The oscillator frequency is programmed by a single external resistor (R_{SFT}). The LTC1799 has been designed for high accuracy operation ($\leq 1.5\%$ frequency error) without the need for external trim components.

The LTC1799 operates with a single 2.7V to 5.5V power supply and provides a rail-to-rail, 50% duty cycle square wave output. The CMOS output driver ensures fast rise/fall times and rail-to-rail switching. The frequency-setting resistor can vary from 3k to 1M to select a master oscillator frequency between 100kHz and 33MHz (5V supply). The three-state DIV input determines whether the master clock is divided by 1, 10 or 100 before driving the output, providing three frequency ranges spanning 1kHz to 33MHz (5V supply). The LTC1799 features a proprietary feedback loop that linearizes the relationship between R_{SET} and frequency, eliminating the need for tables to calculate frequency. The oscillator can be easily programmed using the simple formula outlined below:

$$f_{OSC} = 10 \text{MHz} \bullet \left(\frac{10 \text{k}}{\text{N} \bullet \text{R}_{SET}}\right), \text{ N} = \begin{cases} 100, \text{DIV Pin} = \text{V}^+ \\ 10, \text{ DIV Pin} = \text{Open} \\ 1, \text{ DIV Pin} = \text{GND} \end{cases}$$



ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltage (V ⁺) to GND DIV to GND SET to GND	0.3V to (V ⁺ + 0.3V)
Operating Temperature Range	
LTC1799C	0°C to 70°C
LTC1799I	40°C to 85°C
LTC1799H	–40°C to 125°C
Storage Temperature Range	–65°C to 150°C
Lead Temperature (Soldering, 10) sec) 300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V⁺ = 2.7V to 5.5V, R_L=5k, C_L = 5pF, unless otherwise noted. All voltages are with respect to GND.

SYMBOL	PARAMETER	CONDITIONS				MIN	ТҮР	MAX	UNITS
Δf	Frequency Accuracy (Notes 2, 3)	V* = 5V	$\begin{array}{l} 5kHz \leq f \leq 20MHz\\ 5kHz \leq f \leq 20MHz, L\\ 5kHz \leq f \leq 20MHz, L\\ 1kHz \leq f \leq 5kHz\\ 20MHz \leq f \leq 33MHz \end{array}$		•		±0.5 ±2.5 ±2.5	±1.5 ±2 ±2.5	% % % %
		V ⁺ = 3V	$\begin{array}{l} 5kHz \leq f \leq 10MHz\\ 5kHz \leq f \leq 10MHz, L\\ 5kHz \leq f \leq 10MHz, L\\ 1kHz \leq f \leq 5kHz\\ 10MHz \leq f \leq 20MHz \end{array}$		•		±0.5 ±2.5 ±2.5	±1.5 ±2 ±2.5	% % % %
R _{SET}	Frequency-Setting Resistor Range	∆f < 1.5%		V ⁺ = 5V V ⁺ = 3V		5 10		200 200	kΩ kΩ
f _{MAX}	Maximum Frequency	∆f < 2.5%, P	in 4= 0V	V ⁺ = 5V V ⁺ = 3V			33 20		MHz MHz
f _{MIN}	Minimum Frequency	Δf < 2.5%, Pin 4= V ⁺				1		kHz	
$\Delta f/\Delta T$	Freq Drift Over Temp (Note 3)	R _{SET} = 31.6k			±0.004		%/°C		
$\Delta f/\Delta V$	Freq Drift Over Supply (Note 3)	V ⁺ = 3V to 5V, F	R _{SET} = 31.6k		•		0.05	0.1	%/V
	Timing Jitter (Note 4)	Pin 4 = V ⁺ Pin 4 = Open Pin 4 = 0V					0.06 0.13 0.4		% % %
	Long-Term Stability of Output Frequency						300		ppm/√kHr
	Duty Cycle (Note 7)		pen (DIV Either by 100 by 1), R _{SET} = 5k to 200	,	•	49 45	50 50	51 55	% %
V+	Operating Supply Range				٠	2.7		5.5	V
I _S	Power Supply Current	R _{SET} = 200k, Pi	n 4 = V ⁺ , R _L = ∞	V ⁺ = 5V	٠		0.7	1.1	mA
		R _{SET} = 10k, Pin	$4 = 0V, R_L = \infty$	V ⁺ = 5V V ⁺ = 3V	•			2.4 2	mA mA
V _{IH}	High Level DIV Input Voltage				٠	V ⁺ - 0.4			V
V _{IL}	Low Level DIV Input Voltage				•			0.5	V
I _{DIV}	DIV Input Current (Note 5)	Pin 4 = V+ Pin 4 = 0V		V ⁺ = 5V V ⁺ = 5V	•	-8	5 -5	8	μΑ μΑ
								SI	n1799 1799fbs

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. V⁺ = 2.7V to 5.5V, R_L=5k, C_L = 5pF, Pin 4 = V⁺ unless otherwise noted. All voltages are with respect to GND.

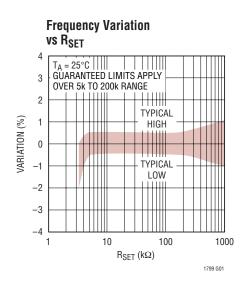
SYMBOL	PARAMETER	CONDITIONS			MIN	ТҮР	MAX	UNITS
V _{OH}	High Level Output Voltage (Note 5)	V ⁺ = 5V, LTC1799C/I	$I_{OH} = -1mA$ $I_{OH} = -4mA$	•	4.8 4.5	4.95 4.8		V V
		V ⁺ = 5V, LTC1799H	$I_{OH} = -1mA$ $I_{OH} = -4mA$	•	4.75 4.40	4.95 4.75		V V
		V ⁺ = 3V, LTC1799C/I	$I_{OH} = -1mA$ $I_{OH} = -4mA$	•	2.7 2.2	2.9 2.6		V V
		V ⁺ = 3V, LTC1799H	$I_{OH} = -1mA$ $I_{OH} = -4mA$	•	2.65 2.10	2.90 2.55		V V
V _{OL}	Low Level Output Voltage (Note 5)	V ⁺ = 5V, LTC1799C/I	$I_{OL} = 1mA$ $I_{OL} = 4mA$	•		0.05 0.2	0.15 0.4	V V
		V ⁺ = 5V, LTC1799H	$I_{OL} = 1mA$ $I_{OL} = 4mA$	•		0.05 0.25	0.20 0.50	V V
		V ⁺ = 3V, LTC1799C/I	$I_{OL} = 1mA$ $I_{OL} = 4mA$	•		0.1 0.4	0.3 0.7	V V
		V ⁺ = 3V, LTC1799H	$I_{OL} = 1mA$ $I_{OL} = 4mA$	•		0.10 0.45	0.35 0.80	V V
t _r	OUT Rise Time (Note 6)	V+ = 5V	Pin 4 = V ⁺ or Floating, $R_L = \infty$ Pin 4 = 0V, $R_L = \infty$			14 7		ns ns
		V+ = 3V	Pin 4 = V ⁺ or Floating, $R_L = \infty$ Pin 4 = 0V, $R_L = \infty$			19 11		ns ns
t _f	OUT Fall Time (Note 6)	V ⁺ = 5V	Pin 4 = V ⁺ or Floating, $R_L = \infty$ Pin 4 = 0V, $R_L = \infty$			13 6		ns ns
		V+ = 3V	Pin 4 = V ⁺ or Floating, $R_L = \infty$ Pin 4 = 0V, $R_L = \infty$			19 10		ns ns

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

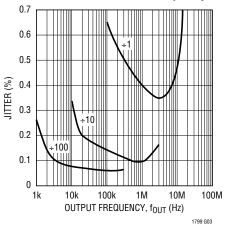
Note 2: Frequencies near 100kHz and 1MHz may be generated using two different values of R_{SET} (see the Table 1 in the Applications Information section). For these frequencies, the error is specified under the following assumption: $10k < R_{SFT} \le 100k$. The frequency accuracy for $f_{OSC} = 20MHz$ is guaranteed by design and test correlation.

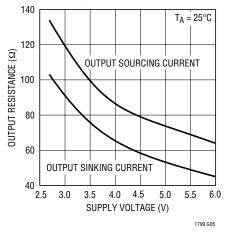
Note 3: Frequency accuracy is defined as the deviation from the f_{OSC} equation.

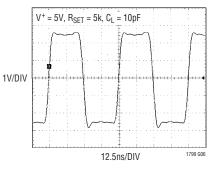
Note 4: Jitter is the ratio of the peak-to-peak distribution of the period to the mean of the period. This specification is based on characterization and is not 100% tested.

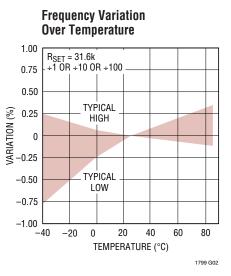

Note 5: To conform with the Logic IC Standard convention, current out of a pin is arbitrarily given as a negative value.

Note 6: Output rise and fall times are measured between the 10% and 90% power supply levels. These specifications are based on characterization.

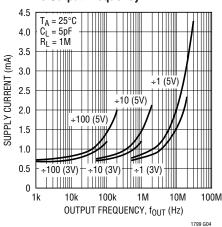

Note 7: Guaranteed by 5V test.


TYPICAL PERFORMANCE CHARACTERISTICS

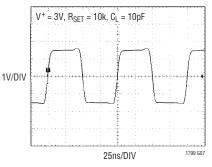

Peak-to-Peak Jitter vs Frequency



Output Resistance vs Supply Voltage



LTC1799 Output Operating at 20MHz, V_{S} = 5V

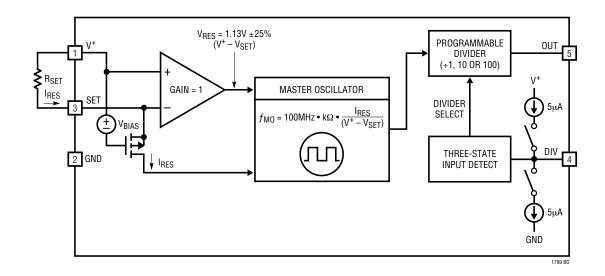


Supply Current vs Output Frequency

LTC1799 Output Operating at 10MHz, V_S = 3V

PIN FUNCTIONS

V⁺ (**Pin 1**): Voltage Supply ($2.7V \le V^+ \le 5.5V$). This supply must be kept free from noise and ripple. It should be bypassed directly to a ground plane with a 0.1μ F capacitor.


GND (Pin 2): Ground. Should be tied to a ground plane for best performance.

SET (Pin 3): Frequency-Setting Resistor Input. The value of the resistor connected between this pin and V⁺ determines the oscillator frequency. The voltage on this pin is held by the LTC1799 to approximately 1.13V below the V⁺ voltage. For best performance, use a precision metal film resistor with a value between 10k and 200k and limit the capacitance on this pin to less than 10pF.

DIV (Pin 4): Divider-Setting Input. This three-state input selects among three divider settings, determining the value of N in the frequency equation. Pin 4 should be tied to GND for the \div 1 setting, the highest frequency range.

Floating Pin 4 divides the master oscillator by 10. Pin 4 should be tied to V⁺ for the \div 100 setting, the lowest frequency range. To detect a floating DIV pin, the LTC1799 attempts to pull the pin toward midsupply. This is realized with two internal current sources, one tied to V⁺ and Pin 4 and the other one tied to ground and Pin 4. Therefore, driving the DIV pin high requires sourcing approximately 5µA. Likewise, driving DIV low requires sinking 5µA. When Pin 4 is floated, preferably it should be bypassed by a 1nF capacitor to ground or it should be surrounded by a ground shield to prevent excessive coupling from other PCB traces.

OUT (Pin 5): Oscillator Output. This pin can drive $5k\Omega$ and/or 10pF loads. Larger loads may cause inaccuracies due to supply bounce at high frequencies. Transients will not cause latchup if the current into/out of the OUT pin is limited to 50mA.

BLOCK DIAGRAM

THEORY OF OPERATION

As shown in the Block Diagram, the LTC1799's master oscillator is controlled by the ratio of the voltage between the V⁺ and SET pins and the current entering the SET pin (I_{RES}). The voltage on the SET pin is forced to approximately 1.13V below V⁺ by the PMOS transistor and its gate bias voltage. This voltage is accurate to \pm 7% at a particular input current and supply voltage (see Figure 1). The effective input resistance is approximately 2k.

A resistor R_{SET}, connected between the V⁺ and SET pins, "locks together" the voltage (V⁺ – V_{SET}) and current, I_{RES}, variation. This provides the LTC1799's high precision. The master oscillation frequency reduces to:

$$f_{\rm MO} = 10 {\rm MHz} \bullet \left(\frac{10 {\rm k} \Omega}{{\rm R}_{\rm SET}} \right)$$

The LTC1799 is optimized for use with resistors between 10k and 200k, corresponding to master oscillator frequencies between 0.5MHz and 10MHz. Accurate frequencies up to 20MHz ($R_{SET} = 5k$) are attainable if the supply voltage is greater than 4V.

To extend the output frequency range, the master oscillator signal may be divided by 1, 10 or 100 before driving OUT (Pin 5). The divide-by value is determined by the state of the DIV input (Pin 4). Tie DIV to GND or drive it below 0.5V to select \div 1. This is the highest frequency range, with the master output frequency passed directly to OUT. The DIV pin may be floated or driven to midsupply to select \div 10, the intermediate frequency range. The lowest frequency range, \div 100, is selected by tying DIV to V⁺ or driving it to within 0.4V of V⁺. Figure 2 shows the relationship between R_{SET}, divider setting and output frequency, including the overlapping frequency ranges near 100kHz and 1MHz.

The CMOS output driver has an on resistance that is typically less than 100Ω . In the +1 (high frequency) mode, the rise and fall times are typically 7ns with a 5V supply and 11ns with a 3V supply. These times maintain a clean square wave at 10MHz (20MHz at 5V supply). In the +10 and +100 modes, where the output frequency is much lower, slew rate control circuitry in the output driver increases the rise/fall times to typically 14ns for a 5V supply and 19ns for a 3V supply. The reduced slew rate lowers EMI (electromagnetic interference) and supply bounce.

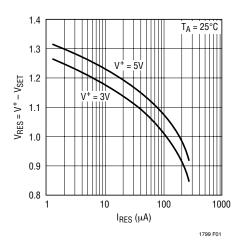


Figure 1. V⁺ – V_{SET} Variation with I_{RES}

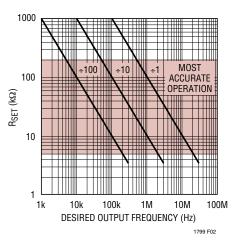


Figure 2. R_{SET} vs Desired Output Frequency

APPLICATIONS INFORMATION

SELECTING THE DIVIDER SETTING AND RESISTOR

The LTC1799's master oscillator has a frequency range spanning 0.1MHz to 33MHz. However, accuracy may suffer if the master oscillator is operated at greater than 10MHz with a supply voltage lower than 4V. A programmable divider extends the frequency range to greater than three decades. Table 1 describes the recommended frequencies for each divider setting. Note that the ranges overlap; at some frequencies there are two divider/resistor combinations that result in the desired frequency.

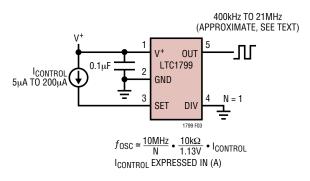
In general, any given oscillator frequency (f_{OSC}) should be obtained using the lowest master oscillator frequency. Lower master oscillator frequencies use less power and are more accurate. For instance, $f_{OSC} = 100$ kHz can be obtained by either $R_{SET} = 10$ k, N = 100, master oscillator = 10MHz or $R_{SET} = 100$ k, N = 10, master oscillator = 1MHz. The $R_{SET} = 100$ k is preferred for lower power and better accuracy.

Table 1. I	Frequency	Range vs	s Divider	Setting
------------	-----------	----------	-----------	---------

DIVID	ER SE	TTING	FREQUENCY RANGE
÷1	⇒	DIV (Pin 4) = GND	>500kHz*
÷10	⇒	DIV (Pin 4) = Floating	50kHz to 1MHz
÷100	⇒	DIV (Pin 4) = V^+	< 100kHz

^{*}At master oscillator frequencies greater than 10MHz ($R_{SET} < 10k\Omega$), the LTC1799 may suffer reduced accuracy with a supply voltage less than 4V.

After choosing the proper divider setting, determine the correct frequency-setting resistor. Because of the linear correspondence between oscillation period and resistance, a simple equation relates resistance with frequency.


$$\begin{split} R_{SET} &= 10k \bullet \left(\frac{10MHz}{N \bullet f_{OSC}}\right), \ N \ = \ \begin{cases} 100\\10\\1\\ (R_{SETMIN} = 3k \ (5V \ Supply), \ 5k \ (3V \ Supply), \\ R_{SETMAX} = 1M) \end{split}$$

Any resistor, R_{SET} tolerance adds to the inaccuracy of the oscillator, $f_{OSC}.$

ALTERNATIVE METHODS OF SETTING THE OUTPUT FREQUENCY OF THE LTC1799

The oscillator may be programmed by any method that sources a current into the SET pin (Pin 3). The circuit in Figure 3 sets the oscillator frequency using a programmable current source and in the expression for f_{OSC} , the resistor R_{SET} is replaced by the ratio of $1.13V/I_{CONTROL}$. As already explained in the "Theory of Operation," the voltage difference between V⁺ and SET is approximately 1.13V, therefore, the Figure 3 circuit is less accurate than if a resistor controls the oscillator frequency.

Figure 4 shows the LTC1799 configured as a VCO. A voltage source is connected in series with an external 10k resistor. The output frequency, f_{OSC} , will vary with $V_{CONTROL}$, that is the voltage source connected between V⁺ and the SET pin. Again, this circuit decouples the relationship between the input current and the voltage between V⁺ and SET; the frequency accuracy will be degraded. The oscillator frequency, however, will monotonically increase with decreasing $V_{CONTROL}$.

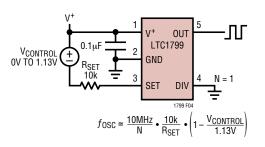


Figure 4. Voltage Controlled Oscillator

APPLICATIONS INFORMATION

POWER SUPPLY REJECTION

Low Frequency Supply Rejection (Voltage Coefficient)

Figure 5 shows the output frequency sensitivity to power supply voltage at several different temperatures. The LTC1799 has a conservative guaranteed voltage coefficient of 0.1%/V but, as Figure 5 shows, the typical supply sensitivity is lower.

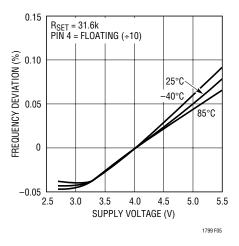
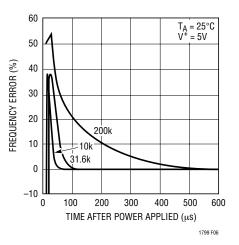


Figure 5. Supply Sensitivity

High Frequency Power Supply Rejection

The accuracy of the LTC1799 may be affected when its power supply generates significant noise with frequency contents in the vicinity of the programmed value of f_{OSC} . If a switching power supply is used to power up the LTC1799, and if the ripple of the power supply is more than a few tens of millivolts, make sure the switching frequency and its harmonics are not related to the output frequency of the LTC1799. Otherwise, the oscillator may show an additional 0.1% to 0.2% of frequency error.


If the LTC1799 is powered by a switching regulator and the switching frequency or its harmonics coincide with the output frequency of the LTC1799, the jitter of the oscillator output may be affected. This phenomenon will become noticeable if the switching regulator exhibits ripples beyond 30mV.

START-UP TIME

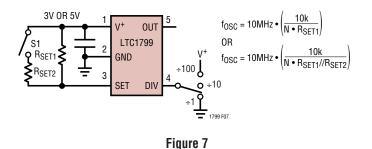

The start-up time and settling time to within 1% of the final value can be estimated by $t_{START} \cong R_{SET}(2.8\mu s/k\Omega) + 20\mu s$. Note the start-up time depends on R_{SET} and it is independent from the setting of the divider pin. For instance with $R_{SET} = 50k$, the LTC1799 will settle with 1% of its 200kHz final value (N = 10) in approximately 160\mu s. Figure 6 shows start-up times for various R_{SET} resistors.

Figure 7 shows an application where a second set resistor R_{SET2} is connected in parallel with set resistor R_{SET1} via switch S1. When switch S1 is open, the output frequency of the LTC1799 depends on the value of the resistor R_{SET1} . When switch S1 is closed, the output frequency of the LTC1799 depends on the value of the parallel combination of R_{SET1} and R_{SET2} .

The start-up time and settling time of the LTC1799 with switch S1 open (or closed) is described by t_{START} shown above. Once the LTC1799 starts and settles, and switch S1 closes (or opens), the LTC1799 will settle to its new output frequency within approximately $25\mu s$.

sn1799 1799fbs

APPLICATIONS INFORMATION

Jitter

The typical jitter is listed in the Electrical Characteristics and shown in the Typical Performance Characteristics. These specifications assume that the capacitance on SET (Pin 3) is limited to less than 10pF, as suggested in the Pin Functions description. If this requirement is not met, the jitter will increase. For more information, contact Linear Technology Applications group.

A Ground Referenced Voltage Controlled Oscillator

The LTC1799 output frequency can also be programmed by steering current in or out of the SET pin, as conceptually shown in Figure 8. This technique can degrade accuracy as the ratio of $(V^+ - V_{SET}) / I_{RES}$ is no longer uniquely dependent of the value of R_{SET} , as shown in the LTC1799 Block Diagram. This loss of accuracy will become noticeable when the magnitude of I_{PROG} is comparable to I_{RES} . The frequency variation of the LTC1799 is still monotonic.

Figure 9 shows how to implement the concept shown in Figure 8 by connecting a second resistor, R_{IN} , between the SET pin and a ground referenced voltage source, V_{IN} .

For a given power supply voltage in Figure 9, the output frequency of the LTC1799 is a function of V_{IN} , R_{IN} , R_{SET} and $(V^+ - V_{SET}) = V_{RES}$:

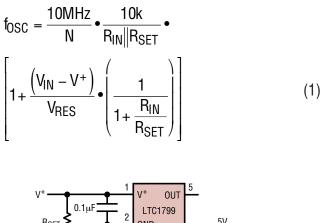


Figure 8. Concept for Programming via Current Steering

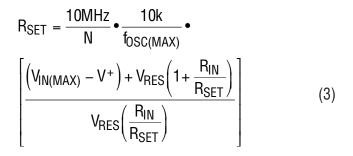
When $V_{IN} = V^+$, the output frequency of the LTC1799 assumes the highest value and it is set by the parallel combination of R_{IN} and R_{SET} . Also note, the output frequency, f_{OSC} , is independent of the value of $V_{RES} = (V^+ - V_{SET})$ so the accuracy of f_{OSC} is within the data sheet limits.

When V_{IN} is less than V⁺, and especially when V_{IN} approaches the ground potential, the oscillator frequency, f_{OSC}, assumes its lowest value and its accuracy is affected by the change of V_{RES} = (V⁺ - V_{SET}). At 25°C V_{RES} varies by ±8%, assuming the variation of V⁺ is ±5%. The temperature coefficient of V_{RES} is 0.02%/°C.

By manipulating the algebraic relation for f_{OSC} above, a simple algorithm can be derived to set the values of external resistors R_{SET} and R_{IN} , as shown in Figure 9.

- 1. Choose the desired value of the maximum oscillator frequency, $f_{OSC(MAX)}$, occurring at maximum input voltage $V_{IN(MAX)} \le V^+$.
- 2. Set the desired value of the minimum oscillator frequency, $f_{OSC(MIN)}$, occurring at minimum input voltage $V_{IN(MIN)} \ge 0$.
- 3. Choose V_{RES} = 1.1 and calculate the ratio of R_{IN}/R_{SET} from the following:

 $R_{IN} =$


R_{SET}

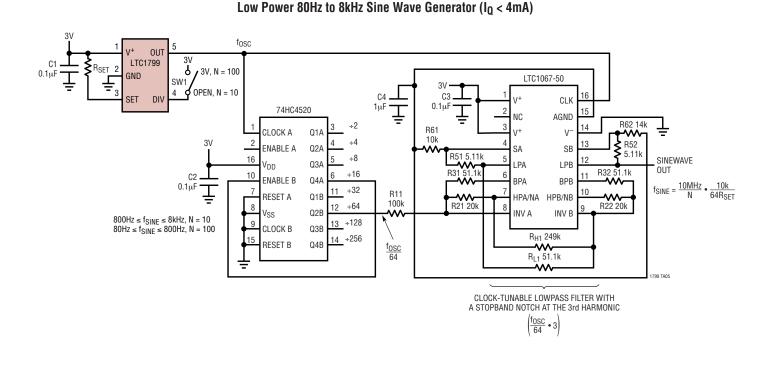
$$\frac{\left(V_{IN(MAX)} - V^{+}\right) - \left(\frac{f_{OSC(MAX)}}{f_{OSC(MIN)}}\right) \left(V_{IN(MIN)} - V^{+}\right)}{V_{RES} \left[\frac{\left(f_{OSC(MAX)}\right)}{f_{OSC(MIN)}} - 1\right]} - 1 \quad (2)$$

Once R_{IN}/R_{SET} is known, calculate R_{SET} from:

Maximum VCO Modulation Bandwidth

The maximum VCO modulation bandwidth is 10kHz; that is, the LTC6900 will respond to changes in V_{IN} at a rate up to 25kHz. In lower frequency applications however, the modulation frequency may need to be limited to a lower rate to prevent an increase in output jitter. This lower limit

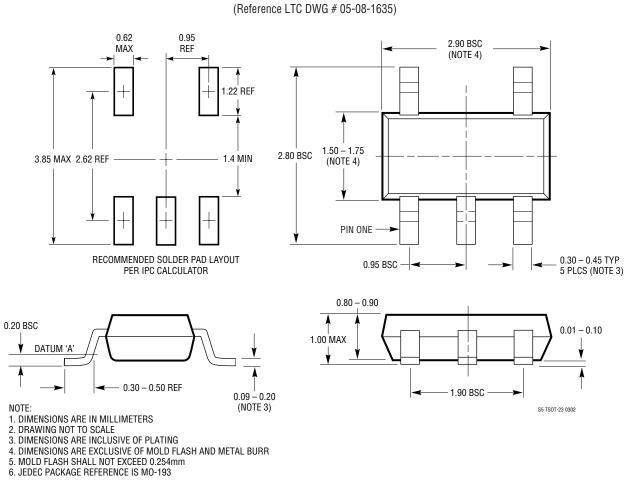
is the master oscillator frequency divided by 20, ($f_{OSC}/20$). In general, for minimum output jitter the modulation frequency should be limited to $f_{OSC}/20$ or 10kHz, whichever is less. For best performance at all frequencies, the value for f_{OSC} should be the master oscillator frequency (N = 1) when V_{IN} is at the lowest level.


Table 2 Variation	of Vore for Variou	s Values of R _{IN} R _{SET}
	OL ARES IOL AUTION	

$R_{IN} \parallel R_{SET} (V_{IN} = V^+)$	$V_{RES}, V^+ = 3V$	$V_{RES}, V^+ = 5V$		
10k	0.98V	1.06V		
20k	1.03V	1.11V		
40k	1.09V	1.17V		
80k	1.13V	1.21V		
160k	1.16V	1.24V		

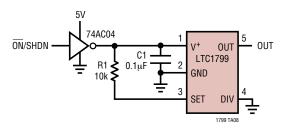
 V_{RES} = Voltage across R_{SET}

Note: All of the calculations above assume V_{RES} = 1.1V, although V_{RES} ~ 1.1V. For completeness, Table 2 shows the variation of VRES against various parallel combinations of R_{IN} and R_{SET} (V_{IN} = V⁺). Calulate first with V_{RES} ~ 1.1V, then use Table 2 to get a better approximation of V_{RES}, then recalculate the resistor values using the new value for V_{RES}.

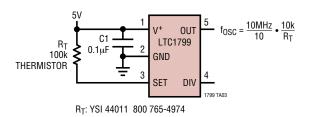

TYPICAL APPLICATIONS

sn1799 1799fbs

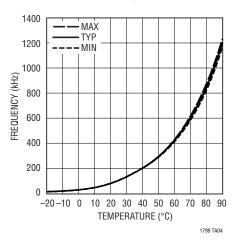
PACKAGE DESCRIPTION



S5 Package 5-Lead Plastic TSOT-23



TYPICAL APPLICATIONS


Shutting Down the LTC1799

Temperature-to-Frequency Converter

Output Frequency vs Temperature

