Geophysics Interferometer (GIF) subgroup Akiteru Takamo

Akiteru Takamori (sub-chief) (ERI, University of Tokyo)

- Construction and operation of GIF for geophysical observations
- Data analysis and interpretation (including environmental sensors)
- Application of GIF data for improving KAGRA's performance

Strainmeter observes slow ground motion

Laser strainmeter

• Laser wavelength: absolute length reference

reflectors fixed to ground no length / alignment controls

bright

Michelson interferometer •

Construction of GIF

Construction of a 1500-m laser strainmeter in the KAGRA tunnel

GIF & clio strainmeters

- GIF in KAGRA tunnel (in operation since 2016)
- 100 m strainmeter in CLIO site (since 2003)

KAGRA baselines and fault locations (Cosmic Ray Research Institute, Univ. of Tokyo)

Optical configuration of GIF–X 500 m 1500m 5m Retroreflector Wedged Plate **Optical Bench2** Cover for Input-Output Optics End Tank BS Input path Wave Pate **Optical Bench1** Near Tank Retroref Stabilized laser End reflector Front reflector Laser **& BS**

Iodine (I2) stabilized laser

- Stabilizes laser frequency
 - To iodine Doppler-free hyperfine absorption line (532 nm)
 - Stability of ~ 10⁻¹³ absolute frequency in Allan variance estimation

7

Input & output optical system

- Input & output telescopes
 - Optimizes input beam profile
 - Focuses output beam to PDs for fringe detection

Input optics (left) and interferometric fringe (right).

Retroreflectors (corner reflectors)

- Installed at both arm ends
 - 3 mutually perpendicular mirrors
 - Reflect beam exactly parallel to incident beam
 - reflectors with 15-inch aperture were specially manufactured for GIF

cf. clio (100 m strainmeter) uses 6-cm reflectors (standard size)

Retroreflector for clio

Retroreflector for GIF

Observation with GIF

- Earth tides $\sim 3 \times 10^{-8}$ in strain
 - Observed amplitude 87 % of theoretical calc.
 - Earth tides are reduced by topographic effect

Earth tide

• Deformation of the Earth caused by gravity of the Moon and Sun

Nominal displacement: $3 \mu m / 100 m (3 \times 10^{-8} \text{ in strain})$ Diameter of hair – 50 μm (typical)

Ground motion is our SIGNAL.

- Earth tides
 - Earth's rigidity, inner structure, oceanic & topographic effects... $[1 \times 10^{-8}]$

Day of June 2003

Good agreement between observation and standard solid Earth model + oceanic load + topographic effect (mountain) → Research on inner structure of Earth

Observed Earth tides (left) and topographic effects of underground site

Large and distant earthquakes

- Fiji earthquake (2018)
 - maximum strain amplitude at Kamioka $\sim 3.9 \times 10^{-8}$

19-AUG-2018 00:19:37 M8.2 Fiji Islands 19-AUG-2018 14:56:28 M6.9 Sumbawa, Indonesia

Near earthquakes

- Fukushima (22-NOV-2016 6:59:49, M6.9)
 - maximum strain amplitude at Kamioka $\sim 3 \times 10^{-7}$

Coseismic strain changes

- Crustal deformations associated with seismic fault rupture
 - $10^{-9} \rightarrow 1.5$ km baseline shrinks $1.5 \ \mu m...$ Study on mechanism of earthquakes [1×10⁻⁹] Calculated tide × 0.87 GIF 1-minute average

Strain spectra

- Lowest background, especially at around (1 – 10) mHz
- Capable of detecting pico-strain level

Araya et al., EPS, 2017.

Barometric response: a recent study

Frequency (Hz)

Strain in $10^{-4} - 10^{-3}$ - Hz region is highly dependent on the air pressure.

18

Barometric correction

- Barometric correction reduces strain background to $\sim 1/3$ in the $10^{-4} 10^{-3}$ -Hz region
- The limited reduction implies response of ground to *regional* air pressure (not the response of instruments to the *local* air pressure).
- \rightarrow further studies are required

Long-term strains (Jun. – Sep. 2017)

• Baseline shrinks after rainfall (~ 0.1 mm)

 \rightarrow further investigation

Long-term strains (Dec. 2016 – Feb. 2019)

- Baseline extends after snowfall
 - Study on local crustal motion of KAGRA site

Fault motion monitoring

KAGRA baselines and fault locations (Cosmic Ray Research Institute, Univ. of Tokyo)

Crustal motion observed by GNSS

Averaged velocity: $\sim 10^{-7}$ / year

Niigata-Kobe Tectonic Zone (NKTZ)

Significant to monitor crustal motion precisely over wide timescales.

Long-term strains (Dec.2016 - Feb. 2019)

• Consistent with crustal motion due to plate subduction

Long-term strains (Dec.2016 - Feb. 2019)

- Consistent with motion due to plate subduction
 - Study on relations between crustal deformation and earthquakes and volcanic activities

Study on slow earthquakes and fault motions in Kamioka

- Slow slips around the faults (?)
- \rightarrow GIF can observe ground motion in very wide time scale

Observation of slow slip events in Tokai-region

Unexplained phenomenon 1

• High frequency oscillation observed with earthquake (25-JUN-2017, NAGANO)...rumbling sound?

Unexplained phenomenon 2

• Earthquake swarm (?) observed with seismic monitor (PEM) of KAGRA..."wriggles" of ground?

Feedforward control of arm length of KAGRA using GIF signal

Feedforward control of KAGRA's arm length

T. Akutsu et al., PTEP, 2021

Displacement [um]

Displacement [um]

10

0.1

RMS of arm length

Frequency [Hz]

variation reduced to $\sim 50\%$

Baseline motions (Earth tide) observed by the GIF (top) and the change in length of the KAGRA X-arm cavity (bottom).

Improve stability of KAGRA by using GIF data

- Microseism (~0.2 Hz)
 - Ground motion excited by ocean waves
 - Dominant source of RMS motion of KAGRA arm cavity length change

Operation instability of CLIO prototype GW detector associated with increased microseisms due to bad weather condition.

Microseisms ($\sim 0.2 \text{ Hz}$) is the enemy.

for stable operation of GW detectors

 \rightarrow Could be mitigated by feedforward control with GIF data

Research subjects related to GIF subgroup

- Geophysical studies
 - Use of GIF data for studies on inner structure of Earth, crustal motion, and earthquakes etc.
- Studies on environmental effects in KAGRA
 - Barometric changes, rainfalls, microseisms, and earthquakes etc. ...PEM subgroup
- Integration of GIF with KAGRA control system
 - To realize stable GW observation ... VIS subgroup

