

Works in Laser (LAS) group

2021/5/14 and 28(Fri.)

Osamu Miyakawa

2021/5/14, 28 Works in LAS group

Sensitivity of gravity wave detectors KAGRA

The sensitivity of the detector is basically limited by three principle noises

- Quantum noise:
 - Radiation pressure noise: Noise due to mirror fluctuations caused by laser photons randomly hitting the mirrors at low frequency.
 - Shot noise:

Noise due to fluctuations in the number of photons in the laser at high frequency.

Reduction of quantum noise is necessary to increase the sensitivity.

KAGRA Reduction of shotnoise

KAGRA Objectives of the LAS Group

- To provide a stable and high power laser to KAGRA.
 - Development of laser light sources
 - Laser stabilization
 - Laser maintenance

KAGRA Main locations and members

- Moriwaki-Lab. at Toyama Univ.
 - Intensity Stabilization Servo (ISS)
 - Next high-power laser test (60W -> 120W)
- KAGRA site
 - High power laser installation and maintenance
 - Noise hunting (intensity noise, frequency noise)
- Main members:

Mio (chief), Moriwaki(sub-chief), Haino (sub-chief), Miyakawa, Yamashita (Toyama M2) Kato, Sako (Toyama B4), Tanaka (Kajita group D2), Hirose (Niigata M2)

KAGRA Development Item: High Power Laser

- Measuring laser modes using a ring cavity (by summer)
- Master laser replacement for the next high power laser and the characterizations (around summer)
 - Evaluation for free run intensity noise
 - Evaluation for free run frequency noise
 - Evaluation for beam prorfile
- Installation to KAGRA (Fall)
 - Movement from Toyama Univ. to KAGRA site
 - Switching from current laser to the new laser
- At KAGRA site (by O4)
 - Development of remote control (EPICS etc.)
 - Intensity stabilization
 - Frequency stabilization
- After O4, we will add an amplifier to increase the power to 120W.

KAGRA Next high power laser @ Toyama Univ.

- Consists of an NPRO and two amplifiers (made by neoLASE)
- Same design as LIGO and Virgo
- Currently, one amplifier is installed.
- Output power can be controlled by changing the current going to the amplifier.
- Wavelength: 1064 nm, maximum power: 60 W (120 W in the future)

Laser controller (upper) and power supply (lower)

Laser box

KAGRA Comparison with currently installed laser

KAGRA Comparison with currently installed laser

KAGRA Development item: Intensity stabilization

- At Toyama Univ. (by summer of 2021)
 - PD design and fabrication
 - Servo design
 - Circuit fabrication
 - Installation of digital control system
 - Development of control models, etc.
- At KAGRA site (~end of 2021)
 - Installation to KAGRA site (in air, by O4)
 - Development of control models, etc.
 - Intensity noise hunting downstream of IMC
 - Installation to KAGRA site (in vacuum, after O4)

KAGRA Intensity noise stabilization loop

KAGRA Intensity noise stabilization of the current laser

Requirement for O3 $1 \times 10^{-7} / \sqrt{\text{Hz}}$

RIN is suppressed about three orders of magnitude from 25 Hz to 5 kHz.

[Main Laser Power] 5.4 W [Input Power] In-loop PD : 5.7 mW Out-of-loop PD : 4.8 mW

The next generation intensity strength stabilization @KAGRA site

KAGRA Installation for new laser on PSL table

KAGRA Contact with other groups

- IOO group
 - PSL table
 - PMC, IMC
 - Synchronization to green lasers
- ISS detectors are placed in the transmitted light of IMMT1
 - PMC, IMC will be inside the intensity stabilization loop
- Commissioning
 - Intensity stabilization, frequency stabilization

KAGRA Summary: Major tasks for this fiscal year

- Toyama Univ.
 - Development of ISS, ~October
 - Measurement of high power laser, within this FY
 - High power laser master replacement, summer.
- KAGRA site
 - Installation of ISS, October~
 - Installation of high power laser end of this year~