5784
Comment:
|
7763
|
Deletions are marked like this. | Additions are marked like this. |
Line 8: | Line 8: |
* Table of contents * [[#LVWP|LIGO-Virgo white papers]] * [[#DraftWP|Draft of white paper]] * [[#Meetings|Meetings]] * [[#Science|Scientific motivation]] * [[#Technologies|Survey of the current technologies]] * [[#CurrentFacility|Status of the current facility]] * [[#Schedule|Schedule for the white paper]] * [[#References|References]] |
|
Line 15: | Line 24: |
<<Anchor(LVWP)>> | |
Line 23: | Line 33: |
<<Anchor(DraftWP)>> | |
Line 27: | Line 38: |
<<Anchor(Meetings)>> === Meetings === * [[KAGRA/KSC/FPC/meetings/190108|2019/01/08]] |
|
Line 29: | Line 43: |
<<Anchor(Science)>> | |
Line 56: | Line 71: |
* burst signal [Sachiko Kuroyanagi] * stochastic background [Sachiko Kuroyanagi] * parameter estimation [Kipp Cannon?] |
* burst signal [Kipp Cannon] * stochastic background [Kipp Cannon] * parameter estimation [Kipp Cannon] |
Line 60: | Line 75: |
* inflation models [Jun'ichi Yokoyama?] * phase transition [Shinya Kanemura?] |
* inflation models [Sachiko Kuroyanagi] * phase transition [Mitsuru Kakizaki?] |
Line 77: | Line 92: |
<<Anchor(Technologies)>> | |
Line 90: | Line 106: |
* Silicon mass * 1550nm/2000nm laser * Suspension point interferometer * Vertical suspension point interferometer * Thermal compensation system (BS/PRMs) * Balanced homodyne detector * Low-loss output faraday isolator * Suspension thermal noise cancellation using single loop wires * Khalili cavity * EPR entanglement * Phase camera * Double optical spring * Multi-carrier interferometer * Delay line * Local readout scheme * Intracavity squeezing * Intracavity signal amplifier * White light cavity * Speedmeter * Long SRC * Xylophone |
|
Line 94: | Line 131: |
* Study of new noise sources * Schumann resonance * Water gravity gradient noise * Acoustic gravity gradient noise * Thermal noise in non-equilibrium steady state * Gravity decoherence noise <<Anchor(CurrentFacility)>> |
|
Line 116: | Line 160: |
<<Anchor(Schedule)>> | |
Line 121: | Line 166: |
<<Anchor(References)>> | |
Line 123: | Line 169: |
* [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=7038|Latest estimated sensitivity of KAGRA (v201708) *APPROVED*]] * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=9314|Document Tree for KAGRA Upgrade]] * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=9537|Example sensitivity curves for the KAGRA upgrade]] * [[https://arxiv.org/abs/1804.09894|Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector]] * [[https://git.ligo.org/gwinc|gwinc]] |
Future Planning Committee (FPC) working wiki
Overview
FPC is approved under KSC in Dec/2018 with the following initial members:
- Sadakazu Haino(Chair), Chunglee Kim, Kentaro Komori, Yuta Michimura, Matteo Leonardi, Atsushi Nishizawa, Kentaro Somiya(PRDC chair)
- Any comments/questions/requests from anyone are much appreciated and can be sent to the dedicated Mailing List
- ksc-fpc _at_ icrr.u-tokyo.ac.jp
- Table of contents
Starting points
LIGO-Virgo white papers
LIGO Instrument science white paper (2017): LIGO-T1700231–v2
LIGO Instrument science white paper (2018): LIGO-T1800133–v3
The LSC-Virgo White Paper on Gravitational Wave Data Analysis and Astrophysics (July 2017 edition): LIGO–T1700214-v4 VIR-0435D-17
The LSC-Virgo White Paper on Gravitational Wave Data Analysis and Astrophysics (Summer 2018 edition): LIGO–T1800058-v2 VIR-0119B-18
Draft of white paper
Link to Overleaf: https://www.overleaf.com/project/5c091fbd8795b4614778100c
Link to Dropbox (backup): https://www.dropbox.com/sh/ry8x2x5wco4xbxx/AAAy782OD9Mhbca7Cov0Ws5Oa?dl=0
Meetings
White paper plan
- Scientific motivation
- Stellar-mass BBH
- formation scenarios [Kohei Inayoshi]
- population (parameter estimation) [Chunglee Kim]
- host galaxy identification (sky localization) [Chunglee Kim]
- Intermediate-mass BBH
- formation scenarios [Kohei Inayoshi]
- polulation (parameter estimation) [Chunglee Kim]
- intermediate mass-ratio binaries [Norichika Sago]
- BNS and BHNS
- binary evolution [Chunglee Kim]
- population (parameter estimation) [Chunglee Kim]
- NS EOS and tidal deformation [Masaru Shibata]
- NS remnant [Masaru Shibata]
- kilonova [Masaru Shibata]
- short gamma-ray burst [Kunihito Ioka]
- Accereting binaries
- low-mass x-ray binaries [Albert Kong]
- Isolated NS
- pulsar ellipticity (continuous) [Yousuke Itoh]
- pulsar glitches and magnetar flare [Yasufumi Kojima]
- stellar oscillation [Hajime Sotani]
- Supernova
- explosion models [Kei Kotake]
- distinguishing explosion models (parameter estimation) [Kazuhiro Hayama]
- polarization [Kazuhiro Hayama]
- Cosmic string
- burst signal [Kipp Cannon]
- stochastic background [Kipp Cannon]
- parameter estimation [Kipp Cannon]
- Stochastic background
- inflation models [Sachiko Kuroyanagi]
- phase transition [Mitsuru Kakizaki?]
- astrophysical background [??]
- spectral shape (parameter estimation) [Sachiko Kuroyanagi]
- Test of gravity
- test of consistency with GR [Tjonnie G. F. Li]
- generation mechanism [Takahiro Tanaka]
- propagation effect [Atsushi Nishizawa]
- polarization [Hiroki Takeda]
- BH no-hair theorem [Hiroyuki Nakano]
- Cosmology
- Hubble constant measurement [Atsushi Nishizawa]
- Multimessenger
- fast radio burst [Kazumi Kashiyama]
- long gamma-ray burst [Ryo Yamazaki]
- Others
- BH echo [Takahiro Tanaka]
- Stellar-mass BBH
- Survey of the current technologies (price and readiness)
- High power laser (how much power? stability?) [Haino?]
- Parametric instabilty vs power, mitigation schemes [Michimura? KYamamoto?]
- Squeezing (squeezing level, losses) [Matteo, Eleonora]
- Filter cavity (losses) [Matteo, Eleonora]
- Mirror (mass, coating, absorption) [Hirose?]
- Suspending larger mirror [Okutomi?]
- Suspension design for suspension thermal noise reduction (upper stage masses, sapphire blades, ribbon design) [Tomaru?]
- Improving heat conductivity of sapphire fibers [Tomaru?]
- Extreme RSE (high SRM reflectivity possible?) [Michimura?]
- Technological noises at low frequencies [Michimura?]
- Newtonian noise cancellation [Nishizawa?]
- QND, quantum locking [KNagano]
- Silicon mass
- 1550nm/2000nm laser
- Suspension point interferometer
- Vertical suspension point interferometer
- Thermal compensation system (BS/PRMs)
- Balanced homodyne detector
- Low-loss output faraday isolator
- Suspension thermal noise cancellation using single loop wires
- Khalili cavity
- EPR entanglement
- Phase camera
- Double optical spring
- Multi-carrier interferometer
- Delay line
- Local readout scheme
- Intracavity squeezing
- Intracavity signal amplifier
- White light cavity
- Speedmeter
- Long SRC
- Xylophone
- Technologies to accerelate commissioning work (e.g. machine learning for auto alignment)
- Technologies to improve stability
- Technologies to improve duty cycle
- Technologies to reduce calibration error
- Study of new noise sources
- Schumann resonance
- Water gravity gradient noise
- Acoustic gravity gradient noise
- Thermal noise in non-equilibrium steady state
- Gravity decoherence noise
- Status of the current facility
- TUN
- FCL
- VAC
- CRY [Tomaru]
- VIS [Takahashi, Aso]
- MIR [Hirose]
- LAS [Mio]
- IOO [Kokeyama, Somiya]
- AOS [Akutsu]
- ...
- Limits of the current facility
- Mirror size in cryostat [KYamamoto?]
- Filter cavity length [Matteo, Eleonora]
- Computing resources [Chunglee?]
- Trade-off studies
- Time scale of plans: near-term(more realistic) and longer-term(some dreams)
- Back up plans
R&Ds to be done : input to the PRDC
- Budget estimate
- Project execution plan
Schedule for the white paper
- Work in progress draft to be presented @ KIW in Feb 2019 : Feedbacks from Virgo
- First draft to be circulated @ April 2019 F2F
- Final version to be put for approval @ Aug 2019 F2F