Photothermal and nonlinear optical effects in the signal amplification system

<u>Sotatsu Otabe</u>, Kentaro Komori, Ken-ichi Harada, Kaido Suzuki, Yuta Michimura and Kentaro Somiya

2022/11/17

Contents

- Sensitivity improvement techniques
 - Optical spring
 - Squeezing
- Signal amplification experiment
 - > OPA scheme
 - Kerr scheme
- Photothermal effect
 - Frequency response
 - Optical damping
- Summary

Quantum Noise in the GW Detector

Improve sensitivity \rightarrow Signal amplification and/or noise reduction

Improve Sensitivity: Optical Spring

End mirrors receive radiation pressure force F_{rad} \rightarrow Amplify GW signals by a spring composed of light

Amplify the GW signals around resonance frequency Resonance frequency is limited by laser power, ~ 100 Hz for KAGRA

Improve Sensitivity: Squeezing

Vacuum field is elliptically deform by the squeezer

Input squeezing

- Input vacuum field is squeezed
- Already installed in GW detectors

Intracavity squeezing

- Signal and noise amp rates are different
- Principle verification experiments is required

Signal Amplification System

Our proposal: enhance optical spring by the intracavity squeezing

Resonance frequency of the optical spring is shifted to high frequency band with strong intracavity signal amplification \rightarrow **Amplify** \sim **kHz GW signals such as BNS or supernova**

Sotatsu Otabe

OPA Experiment

Experimental goal:

Observe an optical spring enhanced by intracavity signal amplification

Intracavity signal amplification can be implemented with optical parametric amplification (OPA)

Amplify carrier light (1064 nm) by pump light (532 nm) Incident carrier light and counterpropagating light →Compare amplified light and non-amplified light

Power and Signal Amplification

Sotatsu Otabe

OPA Near the Threshold

Sotatsu Otabe

Kerr Effect

OPA is not the only way to produce signal amplification →Focusing on the optical Kerr effect; a phenomenon in which the refractive index changes in proportion to light intensity

Cascaded Nonlinear Optical Effect

Phase matching: match the speed of different frequency light propagating through a nonlinear optical crystal

The phase of the entire infra-red light changes as the generated green light is reconverted to the infra-red light \rightarrow The effective refractive index changes (equivalent to Kerr effect)

Confirmation of the Kerr Effect

Phase-mismatching condition can be achieved by changing the temperature of the crystal

Temperature controller

Phase-matched at 36.8°C Phase-mismatched at 42.0°C

Carrier: 570 mW Counter: 14 mW

Achieved about 1/3 of the critical Kerr effect \rightarrow Sufficient to observe the enhanced optical spring!

Photothermal Effect

- Kerr effect requires relatively high intracavity power (~40 W)
- Nonlinear optical crystal has relatively large thermal absorption and thermal expansion coefficient →Photothermal effect cannot be neglected

Consider the impact of the photothermal effect on the radiation pressure force F_{rad} and optical spring constant

Frequency Response of the Cavity

Measure the frequency response of the cavity

Qualitative Explanation

②Frequency as high as the photothermal absorption rate

 \rightarrow Cavity length stored by thermal expansion is released \rightarrow Cavity length changes faster than signal (phase lead)

③Frequency lower than the photothermal relaxation rate

 \rightarrow Crystal reaches the thermal equilibrium

 \rightarrow Cavity length changes following the signal (phase unchanged)

Frequency Response of the Cavity

The relationship between the cavity length x and the mirror displacement x_{act} can be written as:

$$\frac{x(\Omega)}{x_{\rm act}(\Omega)} = \frac{\gamma_{\rm th} + i\Omega}{(\omega_{\rm th} + \gamma_{\rm th}) + i\Omega}$$

Photothermal absorption rate

Photothermal relaxation rate

The area contributing to the photothermal effect is expanded in the low-frequency band \rightarrow It agrees with theory above 15 Hz

Optical Spring with Photothermal Effect

Optical spring constant can be written as:

Radiation pressure force

Optical spring constant $F_{\rm rad}(\Omega) = -k_{\rm opt}^{\checkmark} x(\Omega)$ Cavity length

This relationship does not change in the presence of photothermal effect, but the cavity length and mirror displacement do not match:

$$F_{\rm rad}(\Omega) = -\frac{\gamma_{\rm th} + i\Omega}{(\omega_{\rm th} + \gamma_{\rm th}) + i\Omega} k_{\rm opt} x_{\rm act}(\Omega)$$

New optical spring constant has a large imaginary component \rightarrow Photothermal effect provides extremely significant optical damping

Experimental Setup

Apply a signal to the coil magnet actuator and detect the response \rightarrow Measure susceptibility of the optomechanical oscillator

NLC was heated to 120°C →Nonlinear optical effects can be negligible

Resonance frequency: 14.2 ± 0.1 Hz Mechanical Q factor: 193 ± 3

Transfer Function of the Optical Spring

Large input power P_0 and small cavity detuning δ_0 \Rightarrow Large optical spring constant k_{opt} and large photothermal absorption rate ω_{th}

Sotatsu Otabe

Estimation Results

Estimate two parameter from phase measurements

Precisely estimate k_{opt} in the absence of photothermal effects \rightarrow Virtually eliminate the influence of photothermal effects!

Why are k_{opt} and ω_{th} the same function?

Equivalency

Radiation pressure force is proportional to the intracavity power:

Photothermal absorption rate is the value of how much the heat absorption amount changes with the cavity length change:

Heat absorption amount ${\longrightarrow} W \sim P \sim \omega_{\rm th} x$ Photothermal absorption rate

 $\rightarrow k_{\text{opt}}$ and ω_{th} are **identical** except for the proportionality factor \rightarrow They exhibit the same functional dependencies for all parameters \rightarrow It is impossible to avoid the photothermal effect

Need to design interferometers to incorporate photothermal effects

Phase Measurement Results with Kerr Effect

Intracavity signal amplification enhance optical spring constant $k_{\rm opt}$ and photothermal absorption rate $\omega_{\rm th}$ by the same factor

• Frequency response of the cavity

Kerr effect may be enhancing the photothermal absorption rate, **but not consistent with the fitting**

Transfer function of optical spring
Kerr effect seems to reduce the optical spring constant...
This tendency is opposite to the theoretical prediction

2022/11/19

Summary

- The sensitivity of GW detectors can be improved by optical spring and/or squeezing technique
- The resonance frequency of optical spring can be enhanced by intracavity signal amplification
- Kerr scheme provide both high intracavity power and high signal amplification rate
- Photothermal effect is NOT just a technical problem, but also an essential property of signal amplification system
- Further experiments needed to investigate coupling between Kerr effect and photothermal effect