Differences between revisions 117 and 158 (spanning 41 versions)
Revision 117 as of 2020-09-23 09:08:50
Size: 34096
Comment:
Revision 158 as of 2022-04-05 15:39:29
Size: 40060
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
 * See [[KAGRA/PublicationsLVK|LVK publications]] for LIGO-Virgo-KAGRA collaboration papers after 2020.
Line 8: Line 10:
 * [[KAGRA/KSC/OpenData|Playground data]]
Line 13: Line 15:
 * Overview of KAGRA : (2) Noise Budget
   PWT leaders: Kazuhiro Yamamoto [[https://www.overleaf.com/project/5da539402a3f820001ef1b6f|Overleaf]]
Line 19: Line 19:
 * Overview of KAGRA : (7) Future plans
   PWT leader: Sadakazu Haino [[https://www.overleaf.com/project/5d9fdd83bb7b1d0001acb3f4|Overleaf]]
 * IOO paper in preparation
   PWT leader: Keiko Kokeyama [[https://www.overleaf.com/read/ykdbdghvdsnc|Overleaf]]
Line 23: Line 23:

 * Overview of KAGRA : (3) Detchar, calibration, physical environment, data quality
   PWT leaders: Takahiro Yamamoto, Yuki Inoue, Takaaki Yokozawa [[https://www.overleaf.com/project/5d9fe000bb7b1d0001acb4ca|Overleaf]]
   submitted to PTEP
 * Overview of KAGRA : (2) Noise Budget
  * PWT leaders: Kazuhiro Yamamoto, Keiko Kokeyama, Tatsuki Washimi [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=13405|JGW-P2113405]]
  * [[https://arxiv.org/abs/2203.07011]]

 * The current status and future prospects of KAGRA, the large-scale cryogenic gravitational wave telescope built in the Kamioka underground
    * T.Ushiba, M.Nakano, T.Washimi
    * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=13549|JGW-P2113549]]
Line 29: Line 33:
 * Overview of KAGRA : (1) Detector design and construction history
  * KAGRA collaboration (author-list 2018 )
  * PWT leaders: Kentaro Somiya, Yuta Michimura, Kazuhiro Yamamoto (advisors: Osamu Miyakawa, Masayuki Nakano)
  * accepted for publication in Prog. Theor. Exp. Phys. (2020)
  *[[https://www.overleaf.com/project/5d9d8cf1fa153600018ce5e7|Overleaf]], [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=11614|JGW-P2011614]]

Line 39: Line 36:
 * Application of the Hilbert-Huang transform for analyzing standing-accretion-shock-instability induced gravitational waves in a core-collapse supernova
  * M. Takeda, Y. Hiranuma, N. Kanda ,K. Kotake, T. Kuroda, R. Negishi, K. Oohara, K. Sakai, Y. Sakai, T. Sawada, H. Takahashi, S. Tsuchida, Y. Watanabe, T. Yokozawa
  * Physical Review D 104, 084063 (2021) [[https://doi.org/10.1103/PhysRevD.104.084063]]

 * Local Hurst exponent computation of data from triaxial seismometers monitoring KAGRA
  * A. Longo, S. Bianchi, W. Plastinao, K. Miyo, T. Yokozawa, T. Washimi, A. Araya
  * Pure and Applied Geophysics volume 178, pages3461–3470 (2021) [[https://doi.org/10.1007/s00024-021-02810-2]]

 * The KAGRA underground environment and lessons for the Einstein Telescope
  * F. Badaracco, C. D. Rossi, I. Fiori, J. Harms, K. Miyo, F. Paoletti, T. Tanaka, T. Washimi, T. Yokozawa
  * Phys. Rev. D 104, 042006 (2021) [[https://doi.org/10.1103/PhysRevD.104.042006]]

 * Effects of lightning strokes on underground gravitational waves observatories
  * T. Washimi, T. Yokozawa, M. Nakano, T. Tanaka, K. Kaihotsu, Y. Mori, T. Narita
  * JINST 16 P07033 (2021) https://doi.org/10.1088/1748-0221/16/07/P07033

 * Method for environmental noise estimation via injection tests for ground-based gravitational wave detectors
  * Tatsuki Washimi, Takaaki Yokozawa, Taiki Tanaka2, Yosuke Itoh, Jun'ya Kume, and Jun'ichi Yokoyama
  * Class. Quantum Grav. 38 125005 (2021); https://orcid.org/0000-0001-5792-4907

 * High performance thermal link with small spring constant for cryogenic applications
  * Tomohiro Yamada, Takayuki Tomaru, Toshikazu Suzuki, Takafumi Ushiba, Nobuhiro Kimura, Suguru Takada, Yuki Inoue, Takaaki Kajita
  * Cryogenics 116 (2021) 103280; https://www.sciencedirect.com/science/article/pii/S0011227521000382

 * Cryogenic suspension design for a kilometer-scale gravitational-wave detector
  * Takafumi Ushiba, Tomotada Akutsu, Sakae Araki, Rishabh Bajpai, Dan Chen, Kieran Craig, Yutaro Enomoto, Ayako Hagiwara, Sadakazu Haino, Yuki Inoue, Kiwamu Izumi, Nobuhiro Kimura, Rahul Kumar, Yuta Michimura, Shinji Miyoki, Iwao Murakami, Yoshikazu Namai, Masayuki Nakano, Masatake Ohashi, Koki Okutomi, Takaharu Shishido, Ayaka Shoda, Kentaro Somiya, Toshikazu Suzuki, Suguru Takada, Masahiro Takahashi, Ryutaro Takahashi, Shinichi Terashima, Takayuki Tomaru, Flavio Travasso, Ayako Ueda, Helios Vocca, Tomohiro Yamada, Kazuhiro Yamamoto, and Simon Zeidler
  *Class. Quantum Grav. 38 (2021) 085013; https://doi.org/10.1088/1361-6382/abe9f3

 * Vibration isolation systems for the beam splitter and signal recycling mirrors of the KAGRA gravitational wave detector
  * KAGRA collaboration (author-list 2019 )
  * PWT leader: Mark Barton, Naoatsu Hirata, Fabian E Pena Arellano, Enzo Tapia, Tak Lun Terrence Tsang,
  * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=11860|JGW-P2011860]]
  * Class. Quant. Grav. 38 (2020) 065011
  * https://iopscience.iop.org/article/10.1088/1361-6382/abd922

 * Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer
  * KAGRA collaboration (author-list 2018 + 2019)
  * PWT leaders: Takahiro Yamamoto, Yuki Inoue, Takaaki Yokozawa
  * Prog. Theor. Exp. Phys. (2021) Volume 2021, Issue 5, May 2021, 05A101 https://doi.org/10.1093/ptep/ptab018
  * [[https://arxiv.org/abs/2009.09305|arXiv2009/09305]]

 * Demographic Landscape of the KAGRA collaboration
  * Keiko Kokeyama, Chunglee Kim, Joseph M. Fedrow, and Ayaka Shoda
  * AIP Conference Proceedings 2319, 150001 (2021); https://doi.org/10.1063/5.0036998

 * Overview of KAGRA : Detector design and construction history
  * KAGRA collaboration (author-list 2018 )
  * PWT leaders: Kentaro Somiya, Yuta Michimura, Kazuhiro Yamamoto (advisors: Osamu Miyakawa, Masayuki Nakano)
  * Prog. Theor. Exp. Phys. (2021) Volume 2021, Issue 5, May 2021, 05A101 https://doi.org/10.1093/ptep/ptaa125
  *[[https://www.overleaf.com/project/5d9d8cf1fa153600018ce5e7|Overleaf]], [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=11614|JGW-P2011614]]

Line 42: Line 91:
  * Prog. Theor. Exp. Phys. (2020) ptaa120 https://doi.org/10.1093/ptep/ptaa120 (page number not fixed)   * Prog. Theor. Exp. Phys. (2021) Volume 2021, Issue 5, May 2021, 05A103 https://doi.org/10.1093/ptep/ptaa120
Line 51: Line 100:
  * LIGO-Virgo-KAGRA collaboration
  * Accepted for publication in Living Reviews in Relativity (2020)
  * LIGO-Virgo-KAGRA collaboration  [aka scenario paper]
  * Living Reviews in Relativity volume 23, Article number: 3 (2020) [[https://link.springer.com/article/10.1007/s41114-020-00026-9]]
Line 305: Line 354:
 *[[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=12588|Low-Vibration Conductive Cooling of KAGRA Cryogenic Mirror Suspension]]
  * Tomohiro Yamada, University of Tokyo (2021)
Line 340: Line 392:
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=13829|大型重力波望遠鏡KAGRAにおけるインプットモードクリーナーの鏡の角度制御]]
  * Chiaki Hirose, Niigata University (2021)
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=13875|重力波望遠鏡 KAGRA の主干渉計雑音の ガウス性・安定性評価]]
  * Nozomi Morisue, Osaka City University (2021)
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=13725|独立成分分析の KAGRA 観測データへの適用]]
  * Yuichiro Kobayashi, Osaka City University (2021)
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=14013|大型低温重力波望遠鏡における鏡反射膜の機械的散逸測定装置の高精度化]]
  * Yota Nakayama, Toyama University (2021)
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=12440|重力波望遠鏡KAGRAにおける極低温鏡懸架システムの角度調整機構の開発]]
  * Takumi Nishimoto, University of Tokyo (2020)
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=11094|Hilbert-Huang変換を用いた重力波解析 -大きなノイズを加える場合のEnsemble Empirical Mode DecompositionとInstrinsic Mode Functionsの直交化-]]
  * Ryo Negishi, Niigata University (2020)
Line 371: Line 435:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/master_atsuta.pdf|ブラックホールリングダウンからの重力波における高調波を含めた解析]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/master_atsuta.pdf|ブラックホールリングダウンからの重力波における高調波を含めた解析]]
Line 374: Line 438:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/master_kataoka.pdf|非線形光学効果を用いた次世代重力波検出器の要素技術開発]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/master_kataoka.pdf|非線形光学効果を用いた次世代重力波検出器の要素技術開発]]
Line 377: Line 441:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/mthesis_yano_v7.pdf|KAGRA 用アウトプットモードクリーナーのデザイン研究およびプロトタイプ制御実験]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/mthesis_yano_v7.pdf|KAGRA 用アウトプットモードクリーナーのデザイン研究およびプロトタイプ制御実験]]
Line 380: Line 444:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/Kato_Thesis.pdf|重力波望遠鏡における光ばねと非線形結晶を用いた信号増幅器のデザインとその検証]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/Kato_Thesis.pdf|重力波望遠鏡における光ばねと非線形結晶を用いた信号増幅器のデザインとその検証]]
Line 383: Line 447:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/Kumeta_Thesis.pdf|重力波検出器KAGRA の感度向上に向けたアウトプットモードクリーナーの開発]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/Kumeta_Thesis.pdf|重力波検出器KAGRA の感度向上に向けたアウトプットモードクリーナーの開発]]
Line 386: Line 450:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/UedaThesis.pdf|干渉計型重力波検出器における感度向上のための要素技術開発]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/UedaThesis.pdf|干渉計型重力波検出器における感度向上のための要素技術開発]]
Line 389: Line 453:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/Saito_Thesis.pdf|非線形光学素子を用いた重力波信号の増幅]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/Saito_Thesis.pdf|非線形光学素子を用いた重力波信号の増幅]]
Line 400: Line 464:

 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=13973|重力波望遠鏡KAGRAにおける重力波信号の較正に用いる積分球の性能評価]]
  * Kazuma Matsunaga, Toyama University (2021)
Line 409: Line 476:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/kasuya_B_thesis02172120.pdf|重力波検出器KAGRAの出力モードクリーナの姿勢制御]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/kasuya_B_thesis02172120.pdf|重力波検出器KAGRAの出力モードクリーナの姿勢制御]]
Line 412: Line 479:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/yaginuma.pdf|非線形光学結晶挿入型重力波検出器の応答と不安定性]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/yaginuma.pdf|非線形光学結晶挿入型重力波検出器の応答と不安定性]]
Line 415: Line 482:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/Atsuta_Thesis.pdf|神岡におけるシューマン共振の測定]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/Atsuta_Thesis.pdf|神岡におけるシューマン共振の測定]]
Line 418: Line 485:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/Kataoka_Thesis.pdf|重力波検出器で使う制御用回路の検査機構の開発とその応用]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/Kataoka_Thesis.pdf|重力波検出器で使う制御用回路の検査機構の開発とその応用]]
Line 421: Line 488:
 * [[http://www.gravity.ircs.titech.ac.jp/doc/thesis/Yano_Thesis.pdf|神岡における環境雑音の測定および非線形光学素子を用いた信号増幅]]  * [[http://www.gravity.phys.titech.ac.jp/doc/thesis/Yano_Thesis.pdf|神岡における環境雑音の測定および非線形光学素子を用いた信号増幅]]
Line 431: Line 498:
 * [[http://www.gravity.ircs.titech.ac.jp/thesis.html|List of theses from Somiya Group at Titech]]  * [[http://www.gravity.phys.titech.ac.jp/thesis.html|List of theses from Somiya Group at Titech]]

KAGRA Publications

List of Journal papers, PhD theses, Master theses, and Graduation theses related to KAGRA research.

in preparation

For accessing overleaf, please contact to paper-writing team (PWT) leaders. If you plan to begin a new project with overleaf (online LaTeX sharing editor), contact to kagra-overleaf_at_icrr.u-tokyo.ac.jp

  • Overview of KAGRA : (4) Data transfer and management
  • Overview of KAGRA : (5) Data analysis methods
  • IOO paper in preparation

Submitted Papers

  • Overview of KAGRA : (2) Noise Budget
  • The current status and future prospects of KAGRA, the large-scale cryogenic gravitational wave telescope built in the Kamioka underground

Accepted Papers

Journal Papers

PhD Thesis

Master Thesis

Graduation Thesis

KAGRA/Publications (last edited 2024-07-16 18:02:47 by tatsuki.washimi)