Development of Pcal Tx module 20170731

Bin-Hua Hsieh

Outline

- Tx module optical setup
- Output measurement
- Beam Shutter
- Optical Follower Servo
-LabJack DAQ box

Optical setup

Transmitter module

Steps

- Align the optical components and test the output power of two paths (should be a half of the input power).
- Test the relation between HWP plate and output power
- Use beam profiler measure the beam radius and calculate the beam waist
- Using Mode matching decide the position of AOM

Steps

- Align the optical components and test the output power of two paths (should be a half of the input power).
- Test the relation between HWP plate and output power
- Use beam profiler measure the beam radius and calculate the beam
waist
- Using Mode matching decide the position of AOM

Result

Voltage measurement by Integrating Sphere and Photodetector

Output Power Test

- Problem 1: No signal on Integrating Sphere
- The BNC to banana connector was broken
- Solution: Change the connector
- Problem 2: Output power was much lower than Yuki's first measurement
- The beam splitter was a non polarized one, and the quality is not good, which split the beam on both surfaces of the beam splitter, generating two beams.
- Solution: Change beam splitter into p-polarized beam splitter
- Result
- We measured the power of both two beams were around 0.9 W , which corresponds to the input power.

Steps

- Align the optical components and test the output power of two paths (should be a half of the input power).
- Test the relation between HWP plate and output power
- Use beam profiler measure the beam radius and calculate the beam waist
- Using Mode matching decide the position of AOM

Result

Power of Two Paths

Need to change the impedance of the integrating sphere

Steps

- Align the optical components and test the output power of two paths (should be a half of the input power).
- Test the relation between HWP plate and output power
- Use beam profiler measure the beam radius and calculate the beam waist
- Using Mode matching decide the position of AOM

Beam width measurement

Beam width measurement

Beam Shutter


```
Indicator Lamps.
Green Shutter closed
Yellow Power on
Orange Shutter open
    - beam exposed
```


Function: Control the laser beam on or off

When the shutter is open, the power supply voltage is output on connector pin 5. When the shutter is closed, the power supply voltage is output on connector pin 6.

Function
+12 to 24 V DC power to shutter OV
Remote open input
Not Used (Internally connected to pin 1)
'Open' status output
'Closed’ status output
Optional electrical Interlock option - see below.

Power Supply Box

OFS(Optical Follower Servo)

- A dynamic electric devices which can control a signal using feedback system
- Reduce the relative power noise (RPN) of the laser

OFS made by LIGO

OFS front board

OFS back board

Interface front board

Interface back board

LabJack DAQ box

Start 2017-07-13 03:45:34.99
End 2017-07-13 09.45:34.84
Time Interval: 0.1s
Total time: 6 hours
Total data: 216000
Saved in .npy file

```
xiebinghuadeMacBook-Pro:Pcal jeff820926$ python Pcal_data.py
configuring UE9 stream
start stream 2017-07-13 03:45:34.881415
2017-07-13 03:45:34.995753 0.000153784640133 , -0.0116107403301 , -0.0116107403
01, -0.0116107403301
2017-07-13 03:45:35.095659 7.68923200667e-05 , -0.0116107403301, -0.0116107403
01 , -0.0116107403301
2017-07-13 03:45:35.196022 0.0002306769602 , -0.0116107403301, -0.011610740336
    -0.0116107403301
2017-07-13 03:45:35.296106 0.0002306769602 , -0.0116107403301, -0.011610740330
    -0.0116107403301
```

```
2017-07-13 09:45:34.649418 0.000384461600333, -0.0116107403301, -0.01161074033
01, -0.0116107403301
2017-07-13 09:45:34.748856 0.0004613539204 , -0.0116107403301 , -0.0116107403301
, -0.0116107403301
2017-07-13 09:45:34.848856 0.0002306769602 , -0.0116107403301, -0.0116107403301
    , -0.0116107403301
stream stopped
2 1 6 0 0 0 \text { requests with 8.0 packets per request with 16 samples per packet = 276480}
0 0 ~ s a m p l e s ~ t o t a l . ~
O samples were lost due to errors
Adjusted number of samples = 27648000
The experiment took 21600.069658 seconds.
Scan Rate : 13824000 scans / 21600.069658 seconds = 639.997936066 Hz
Sample Rate : 27648000 samples / 21600.069658 seconds = 1279.99587213 Hz
```


Future Work

- Using Mode matching decide the position of AOM
- Using DAQ LabJack record the data from integrating sphere and the OFSPD

