A method for searching for gravitational waves triggered by astronomical observations

Kazuhiro Hayama, Soumya Mohanty

(University of Texas at Brownsville)

Malik Rakhmanov

(Southeastern Louisiana University)

Shantanu Desai

(Pennsylvania State University)

Tiffany Summerscales

(Andrews University)

Contents

- Gravitational wave search triggered by electro-magnetic observations
- World-wide detector network
- Coherent network analysis
- "RIDGE"--fully coherent network analysis
- Application: monitoring Sco X-I, the strongest X-ray emitted LMXB(low mass X-ray binary).

Triggered search

XMM-Newton

•

Chandra

Parkes

SuperKamiokande

TIBET

G070616-00-Z

SDSS

Triggered search

- High energy events are potentially G.W. sources for detection.
- The detection of G.W. can be enhanced by coincidences with electromagnetic observations: GRB, SGR, Pulsar glitch, LMXB, Supernova
- Particularly, when a pulsar glitch is observed, we may predict when it occurs next theoretically(Ito(1983))
 - --> can adjust the observation schedule to the predicted event.
- Detection efficiency can be increased
 - Time coincidence -- specify data to analyze --> sophisticated analysis
 - Source location accurate recovery of waveforms --> extract astrophysical parameters-Newton

SuperKamiokande

SDSS

TIBET

Gravitational wave detector network

Gravitational wave detector network

Coherent network analysis

Natural way to handle networks of detectors

- Use arbitrary # of detectors
- •Statistics combines all data streams coherently
- Recovery of polarization waveforms and sky position

$$\begin{bmatrix} x_1(t) \\ \vdots \\ x_d(t) \end{bmatrix} = \begin{bmatrix} F_{1+}(\theta, \phi) & F_{1\times}(\theta, \phi) \\ \vdots & \vdots \\ F_{d+}(\theta, \phi) & F_{d\times}(\theta, \phi) \end{bmatrix} \begin{bmatrix} h_+(t) \\ h_\times(t) \end{bmatrix} + \begin{bmatrix} n_1(t) \\ \vdots \\ n_d(t) \end{bmatrix}$$

data = response x gw + noise

gw
$$\xi_i(t) = F_{i+}(\theta,\phi)h_+(t) + F_{i\times}(\theta,\phi)h_{\times}(t)$$

Changing (θ,ϕ) , look for

$$L = \sum_{i=1}^{d} \left(\sum_{t=0}^{T} \parallel x_i(t) - \xi_i(t + \tau_i, \theta, \phi) \parallel^2 \right) \rightarrow \text{minimum}$$

G070616-00-Z

Tikhonov regularization

$$\begin{bmatrix} x_{1}(t) \\ \vdots \\ x_{d}(t) \end{bmatrix} = \begin{bmatrix} F_{1+}(\theta, \phi) & F_{1\times}(\theta, \phi) \\ \vdots & \vdots \\ F_{d+}(\theta, \phi) & F_{d\times}(\theta, \phi) \end{bmatrix} \begin{bmatrix} h_{+}(t) \\ h_{\times}(t) \end{bmatrix} + \begin{bmatrix} n_{1}(t) \\ \vdots \\ n_{d}(t) \end{bmatrix}$$

$$F_{+}(\theta, \phi) F_{\times}(\theta, \phi)$$

- •Due to the degree of freedom of the response matrix, the problem becomes ill-posed
- rank deficient.)
- The error in the best-fit solution is amplified

The technique to address this rank deficiency we adopt is Tikhonov regularization based approach (M. Rakhmaonv CQG 23,S673 (2006))

$$L_g = \sum_{i=1}^d \left(\sum_{t=0}^T || x_i(t) - \xi_i(t, \theta, \phi, \tau_i) ||^2 \right) + g\Omega[h]$$

Impose regulator on standard maximum likelihood statistic

similar approach: Klimenko et al PRD 72, 122002 (2005)

Mohanty et al **CQG 23 (2006)**

Effect of regulator

Without regulator, likelihood values beyond a given threshold are scattered widely.

After adding regulator, the values are converged around the true solution.

RIDGE pipeline

-- fully coherent network analysis pipeline -- Project Page: http://phys.utb.edu/~kazu/RIDGE

Flow chart

- Target: triggered/untriggered search
- Pipeline consists of
 - data conditioning
 - coherent network analysis
- •The codes have been fully implemented.
- Currently analyzing LIGO/GEO/VIRGO data:
 - Search for G.W. bursts
 - Understanding various glitches

Note:

glitch : A large amplitude noise transient

RIDGE pipeline

-- fully coherent network analysis pipeline -- Project Page: http://phys.utb.edu/~kazu/RIDGE

Feature:

- New data conditioning
- •Tikhonov-regularized coherent network analysis
- Time domain noise floor whitening
 Mukherjee CQG 21 (2004) \$1783
- Remove lines by Median Based Line Tracker
 Mohanty CQG 19 (2002) 1513

One application of RIDGE

Monitoring Sco X-I

- -- with some combinations of detectors --
- Sco X-1 is the strongest X-ray source, and has frequent X-ray outbursts
- G.W. observation can derive constraints on accretion or r-mode
- Sensitivities of detectors to Sco X-1 changes in time due to the rotation of the detector antenna patterns.
- Which detector combination is effective for detection?
 - Detection efficiency
 - Signal recovery
 - Here we consider H1-H2-L1,H1-H2-L1-V1,H1-L1-V1-LCGT combination

Monte Carlo Simulation

5 simulated data

- H1,H2,L1,V1 design sensitivity
- LCGT-prime: x10 worse than design
- Gaussian noise
- 16384Hz sampling
- 2000sec
- Lines are at same position for all ifo

Injected signal:

- SineGaussian(235Hz)
- Skylocation: ScoX1
- hrss=2x10⁻²¹ Hz^{-1/2}

Monte Carlo Simulation

To focus on importance of detector location, use sensitivity x10 worse than the design sensitivity of LCGT.

Sensitivity to Sco X-I

HI - LI

y-axis: detector response : $F_+(\theta_s,\phi_s)^2 + F_\times(\theta_s,\phi_s)^2$ to the location of Sco X-I(θ_s,ϕ_s)

x-axis: hour from 0:00(JST), today

Due to the rotation of the earth, the response function is 24hr-periodic function.

LIGO only network has sensitivity at the region T = 17-24hr. However, T=2-5hr, 10-16hr, the sensitivity worsens

Sensitivity to Sco X-I

HI,H2 - LI

Sensitivity to Sco X-I

HI,H2 - LI

Detection efficiency

VIRGO compensate the low sensitivity region for LIGO network.

Ofalse alarm rate 0.01Hz

20% ----> 60%

Detection efficiency

LCGT compensates the low sensitivity region for LIGO-VIRGO network.

Ofalse aralm rate 0.2Hz

less 10% ----> 80%

Injected signal:

Sine Gaussian of the central frequency 235Hz

hrss=2.8x10⁻²¹ Hz^{1/2}

HI+LI+VI+LCGT-prime

G070616-00-Z

Summary, current status and future plan

Summary

- •The fully coherent network analysis pipeline called "RIDGE" has been developed.
- •Coincidence analysis with electro-magnetic observations give us
 - •timing information --> more sophisticated analysis
 - •source location --> accurate signal recovery and constrain astrophysical parameters
- •Sensitivities of some detector combinations and signal recovery are presented

Current status

- Pulsar glitches during S5 are being analyzed
- •Start monitoring Sco X-I
- Various detector noise transients are being analyzed

Future plan

- •Set upper limit on some sources
- •Understand detector-originated glitches
- Collaboration with various astronomers needed
- -- Building alert system which enables quick analysis.

END