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e Evolving towards a Big Data architecture
e FPGA co-processing

e Conclusions




Big Data KA

e \Very large, loosely structured data set that defies traditional
storage

e Human and machine generated data
e Multiple sources

e Huge volumes of data that cannot be handled by traditional
database or warehouse systems

e Mostly unstructured and grows at high velocity

e Big data doesn’t always mean huge data, it means “difficult” data




Veracity

+ Volume: Data is too big to scale out
+ Velocity: Decision window is small
+ Variety: Multiple formats challenge integration

+ Veracity: Same data, different interpretations




e Healthcare

e The public sector

e Retail
e Manufacturing
e Personal-location data

e Finance
...anhd science
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(A87EaY What is Big Data used for? KA

Generally they are used in Business
context for:

e Reports
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e Modeling

e Induction
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Some examples:

e The 1000 Genomes Project is aimed to find most genetic variants that
have frequencies of at least 1% in the populations studied. The genome of
each human being is 100 GB long.

e Jack Gallant at UC Berkeley was able to recover what people were seeing
by directly observing activity in their brains by using big data and
statistical methods.

e The Large Hadron Collider (LHC) at CERN in Switzerland started to take
data in 2009. The amount of data collected by CERN is about 25 PB a year.




Big Data Architecture p
Requirements (M=

e Built to run on a cluster of machines
e Scale horizontally
e Handle unstructured/semi-structured data

e Provide storage and computing
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¢ K287k What is Apache Hadoop M

Apache Hadoop is an open source platform for data storage and processing that
IS

v Scalable
v Fault tolerant
v Distributed

Other features:
® Flexibility to store and mine any type of data
® Excels at processing complex data

@® Scales economically




e Horizontal scalability * Programming framework

e Commodity hardware e Organize multiple computersin a
cluster in order to perform needed

e Fault tolerance calculations

e Fault tolerance
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MapReduce KAGRA

e A programming model for data processing

e Consists of two phases: Map and Reduce
e Take a large problem and divide it into sub-problems
e Perform the same function on all sub-problems
e Combine the output from all sub-problems

e Each phase has key-value pairs as input and output




CRA

L [553 Some terminology KAC

Job: unit of work that the client wants to be performed. It consists of the input data, the
MapReduce program and configuration information

Hadoop runs the job dividing it into tasks: map tasks and reduce tasks

There are two types of nodes that control the job execution process: a jobtracker and a
number of tasktracker

Hadoop divides the input to a MapReduce job into fixed-size pieces called splits

Data locality optimization: run the map task on a node where the input data resides in
HDFS

Map task write their output to the local disk, not to HDFS




Design of MapReduce KA

e JobTracker
client
e TaskTracker O

(

L JobTracker
~ N N 7 N N
TaskTracker TaskTracker TaskTracker TaskTracker
Map Map Map Map
/ / / /
Reduce Reduce Reduce Reduce
\_ / \_ W, \_ / \_ Y,
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Data Flow (1/3) M

e MapReduce data flow with a single reduce task

input
HDFS

i }- s | s
: . replication




Data Flow (2/3) M
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e MapReduce data flow with multiple reduce tasks

e Map tasks partition their output

e Data flow between map and reduce tasks is called “the shuffle”

input
HDFS

HDFS
repllcatlon

HDFS




Data Flow (3/3) M
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e MapReduce data flow with no reduce tasks

e Appropriate when processing can be carried out entirely in parallel

input output
HDFS HDFS

.................................................................................

»_—» HDFS
m replication

................................................................................

replication

...............................................................................

m replication




MapReduce example: WordCount p
(1/2) i

Count the number of occurrences of each word in a large amount
of input data

map (String input key, String input value)
foreach word w in input value:
emit(w, 1)

reduce (String output key,
Iterator<int> intermediate vals)
set count = 0
foreach v in intermediate vals:
count += v
emit (output key, count)
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MapReduce example: WordCount p

(2/2) & R

The overall word count process

Shutfing Reducing

Mapping

V1
W

¢ -8

Key: offset
Value: line

Key: word Key: word
Value: count Value: sum of count
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T?EEE HDFS Concepts KAGRA

e Stores files by breaking it into smallest units called Blocks
e Default block size: 64MB
e Large block size to help in maintaining high throughput

e To ensure both reliability and availability each block is replicated
across multiple machine on the cluster




CRA

£ ka87zgxy HDFS Architecture KA

C " =

e Master/Worker design
e HDFS is resilient (even in case of node failure)
e Data is replicated

DataNode

DataNode

-
DataNode g

Shard:\ DataNode
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Desi f HDFS - D
esign o S - Daemons &

e NameNode

e DataNode

Secondary/Backup Node

e Secondary NameNode

Data Node(s)




e Network is presented as a tree = = = | [

=i | [ [ [ |

T 1| | | | 1| | |

. . = | | [ [ {1 |

e Distance between 2 nodes is the =l [—i — | |

sum of their distances to their — —
closest common ancestor — : —

e Bandwidth available for each of the following scenarios becomes
progressively less:

e processes on the same node
o different nodes on the same rack
e nodes on different racks in the same data center
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Replica Placement KAC

e Tradeoff between reliability and write/read bandwidth

node
e Default strategy is to place
e the first replica on the same nodes as the client
 the second replica on a different rack from the first, o I O O B
chosen at random
e the third replica on the same rack as the second, but C
on a different node chosen at random
e further replicas on random nodes on the cluster
rack
* Block replication is across distinct datanodes PR
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HDFS KACRA

e “File System” or “Storage Layer” of Hadoop
e Designed for storing very large files (on a petabytes scale)

e Breaks incoming files into blocks and stores them redundantly across the cluster

Problem Hadoop solution
Data is too big to store in one computer Data is stored on multiple computers
Very high end machines are expensive Run on commodity hw
Commodity hw will fail Sw is intelligent enough to deal with hw failure
Hw failure may lead to data loss Replicate (duplicate) data
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Design straightforward but also very constrained

Provides remote access to a single logical volume stored on a single machine
An NFS server makes a portion of its local system visible to external clients
Important advantage: transparency

As a distributed file system it is limited in its power: files in an NFS volume all reside
on a single machine.

e No reliability
e Possible server overload
e (Clients must copy data to their local machines before they can operate on it




e Designed to store a very large amount of information
e Spreading data across a large number of machines

e Support much larger file sizes than NFS

e Store data reliably

e Data should be available if individual machines in the cluster
malfunction

e Provide fast, scalable access to information

e Serve a larger number of clients by adding more machines to the
cluster




ey —
SEVENTH FRAMEWORK
PROGRAMME

AR HDFS vs NFS (1/2) KACRA

HDFS

e Distributed File System, in which different machines are grouped for storing the data in a distributed
manner

e The same data is stored in a distributed way on set of commodity hardware
e Allows parallel processing of data through MapReduce

e Replicates the data and thus provide fault tolerance

NES

e Network File System, that provides a shared directory to a number of machines that can access the
directory as good as a directory on local file system

¢ All data belonging to an entity (file or set of files) are stored on a single machine and thus require a
dedicated hardware

e Since data is stored on a single location it has been read sequentially

e Since data in NFS is stored on a single machine, it is difficult to access/restore if the machine goes out of
network
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29258 HDFS vs NFS (2/2) KAC

NFS Hadoop

Information is stored across many
servers and larger file sizes than NFS
are supported

If the volume is full, no more files can be
stored

If a volume or a server fails, there is no

Dat tored reliabl
built-in redundancy ata are stored reliably

Block sizes: 4-8KB Bock sizes: 64MB
Most NFS administration is command HDFS provides a web server to
line or included with overall system perform status monitoring and file
management tools browsing operations
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Hadoop Distributions KACGRA

e Distributions provide easy to install mediums like RPMs
e Distros package multiple components that work well together

e Tested

e Support (inte!@: £C|DUdEfr]

—

Apache | ﬂ‘-ﬁ‘-ﬁ\-
Hortonworks
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Outline KAGCRA
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A software architecture, relying on:
e A set of software procedures
e A *nix cluster glued by NFS

e A binder to external sources

*nix *nix *nix *nix *nix *nix

Sl




Step 1 KA

Move from NFS to HDFS:
e To achieve higher reliability

e To increase scalability
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Step 2 KA

e Introduce
HBASE and
OpenTSDB




e Open source, distributed, versioned, column-oriented store

e Distributed Key/Value store B s
e Simple API (PUT, GET, DELETE, SCAN)

e Not a relational database

e Data changes through time

e Table rows are sorted by row key

Row Timestamp Animal ‘ Repair

Type Size Cost

12 Zebra Medium 1000€

Region { Enclosurel 1 Tion Big
Enclosure? 13 Monkey Small 1500€

Table

Family
L Column Cell

(Table, Row_Key, Family, Column, Timestamp) = Cell (Value)




Row columns are grouped into column families
All column families have a common prefix

Column-family-oriented store: physically, all column family members
are stored together on the filesystem (HFile)

The basic unit of scalability and load balancing in HBase is called a
region

Regions are contiguous ranges of rows stored together

Each region is served by one region server, and each of these region
servers can serve many regions at any time




: )
Column-oriented DB LKA/GRA

Column-oriented (a.k.a. vertical) databases store data with a focus on
columns, instead of rows, allowing for huge data compression and
very fast query times.

The downside to these databases is that they will generally only allow

batch updates, having a much slower update time than traditional
models.

row-store column-store

Dato J storef rocuct fcustomer | price




e Column-oriented databases are suitable for read-mostly, read-intensive, large
data repositories

e OLAP, On-Line Analytical Processing
e Big Data Analytics

e Row-oriented (conventional) databases are more suitable for accessing/update
single transactions

e OLTP, On-Line Transaction Processing
e CRUD, Create/Read/Delete/Update activities

(+) Easy to add/modify a record (+) Only need to read in relevant data

(-) Might read in unnecessary data (-) Tuple writes require multiple accesses




e Column-oriented databases make large use of the following
optimizations:

e Compression
e | ate Materialization
e Block Iteration

e |nvisible Join




Compression KA

e Low information entropy (high data value locality) leads to High
compression ratio

e |f data is sorted on one column that column will be super-
compressible in row store

e eg. Run Length Encoding

b

run-length encoding

.
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e As result of queries we expect records

e So at some point of time multiple column must be combined

e One simple approach is to join the columns relevant for a particular
query

e But further performance can be improve using late-materialization




e Delay Tuple Construction

e Might avoid constructing it altogether

e Intermediate position lists might need to be constructed

e Eg: SELECT R.a FROM R WHERE R.c=5 AND R.b =10

e Output of each predicate is a bit string
e Perform Bitwise AND

e Use final position list to extract R.a




Late Materialization KA

e Advantages
e Unnecessary construction of tuple is avoided
e Direct operation on compressed data

e Cache performance is improved




Block Iteration

e Operators operate on blocks of
tuples at once

e |terate over blocks rather than
tuples

e Like batch processing

o>
o>
o>
o>
o>
e If column is fixed width, it can l

be operated as an array
e Minimizes per-tuple overhead

e Exploits potential for
parallelism

EEEEEN EEEEEN
EEEEED EEEEEN
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Invisible Join KA

e |nvisible join is a late materialized join but minimize the values that
need to be extracted out of order

e |nvisible join

e Rewrite joins into predicates on the foreign key columns in the
fact table

e These predicates evaluated either by hash-lookup

e Or by between-predicate rewriting




Invisible Join KA

LECT c.nation, s.nation, d.year,
sum(lo.revenue) as revenue
FFROM customer AS ¢, lineorder AS lo,
supplier AS s, dwdate AS d
WHERE lo.custkey = c.custkey
AND lo.suppkey = s.suppkey
AND lo.orderdate = d.datekey
AND c.region = ASTA
AND s.region = ASTA
AND d.year >= 1992 and d.year <= 1997
GROUP BY c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

[*]

S

[*]

Find Total revenue from Asian customers who purchase a product
supplied by an Asian supplier between 1992 and 1997 grouped by
nation of the customer, supplier and year of transaction
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Invisible Join KA
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Apply region = 'Asia' on Customer table
custkey region nation
1 Asia China Hash table
with keys
2 Europe France 1and 3
3 Asia India
Apply region = 'Asia’' on Supplier table
suppkey region nation
STEP 1 1 Asia Russia — uefhhkt:bl‘le
i
2 Europe Spain y
Apply year in [1992,1997] on Date table
dateid year
Hash table with
01011997 1997 ; keys 01011997,
01021997 1997 01021997, and
01031997 1997 01031997
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Invisible Join KA

B v —
SEVENTH FRAMEWORK
PROGRAMME

Fact Table

orderkey custkey suppkey orderdate revenue

1 3 1 01011997 43256
2 3 2 01011997 33333
3 2 1 01021997 12121
4 1 1 01021997 23233
5 2 2 01021997 45456
6 1 2 01031997 43251

3 2 01031997 34235

7
pV probty probe

STEP 2 Hash table

1
. Hash table | _ | 1 Hash table with 1
with keys | = | 1 with key 1 o keys 01011997 1
1and 3 0 1 01021997, and| ~ [ 1
. 1 1 01031997 1
matching fact 0 ) 3
table bitmap 1 o 1
for cust. dim. 1 o -
iOF 1
Jjoin
* o
0 fact table
B'}\:':e = 1 tuples that
0 satisfy all join
o predicates
0
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Invisible Join KAGCRA
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1
o fact table dimension table
o tuples that nation
1 satisfy all join i
0 predicates China
r—— 0 France
¢ custkey o India
' 3
. 3 \ —-——~
. 2 bitmap —c - ;
)
: 1 L value = 3 Positions ':zz:‘t.uon = in ‘:’Ia E
‘ 2 extraction P China '
- 1 H
w ! " 1
=, 3 nation '
§ 5 Russia :
— k - L
STEP 3 S Spain s
) E 2 =3
— M - ]
;@ . 1 bltrlnap _ 1 ——— | POsition | _| Russia =)
' 1 va U? - 1 Positions |°°kup = R - : 8
= = extraction ussia =
< =
o 2 '
‘ > dateid year ;
; 01011997 1997 :
' [orderdate 01021997 1997 E
: [01011997 01031997 1997 i
i | 01011997 = '
i [01021997 - b\::::,aep 01011997 = 1997 :
] = =
' | 01021997 extraction 01021997 | values jot 1997 :
' [01021997 o
! [01031997
i [ 01031997
1
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Comparison KA
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60
Z - -
5 40 - =
]
B 20 -
ﬁ

1.1 121132112223 ]13.1]132]|33]134]|4.1]42]43 |AVG

EWRS 27 20| 1.5 |43.8(44.1]46.0143.0|142.8|31.2| 6.5 |44.4|14.1|12.2|25.7
B RS (MV) 1.0 1.0 102 |155]|135|11.8(16.1169 |64 | 3.029.2(224]| 6.4 [10.2
@bCS 04101101 |57|42(39]11.0|44|76|06|82|3.7]|26]|40
OCS (Row-MV)| 16.0| 9.1 | 8.4 |33.5(23.5(22.3|48.5(21.5|17.6(17.4|48.6|38.4|32.1|25.9

Baseline performance of C-Store “*CS™ and System X “RS", compared with materialized view cases on the same systems.

e RS: Conventional Data Base System (Not Mentioned)
e (S: Base C-Store case

e RS (MV): System X with optimal collection of MVs

e CS (Row-MV): Column store constructed from RS(MV)
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OpenTSDB  KACRA

OpenTSDB

“OpenTSDB is a distributed, scalable Time Series Database
written on top of HBase. OpenTSDB was written to address
a common need: store, index, and serve metrics collected
from computer systems at a large scale, and make this
data easily accessible and graphable”

e |nternal data architecture supporting very high-
performance data recording




o o N
Time series  KACRA

e Time series data is defined as a sequence of data points
measured typically at successive times spaced at uniform time
intervals

e \With time series data, not only it is possible to determine the
sequence in which some events happened, but it is also possible
to correlate different types of events or conditions that co-occur




TSDB KACRA

e Optimized for best performance for queries based on range of
time

e NoSQL approaches

e Advantages in flexibility and performance

e There are different methods to store and access TS:
e Flat files
e RDBMS
e NoSQL non-relational db




Flat Files ~ KACRA

e Parchet is an effective and simple, modern format that can
store the time and the number of optional values

e Problem: as the number of time series in a single file increases
the fraction of usable data for any particular query decreases

message simpleSeries { message fancySeries {
repeated group sample { repeated group block {
required float t; repeated group tags {
optional float templn; optional string name;
optional float pressureln; optional string value;
optional float tempOut; }
optional float pressurelut; repeated float time;
} repeated float value;
} }
}




e Time, series ID and a value are stored
e Details of the series are stored in a dimension table

e Problem: use of one row per measurement

Time series ID Value

Time

15:51:00 101 0.01
15:51:03 102 1.16
15:52:07 101 0.04
15:52:11 101 0.08
15:53:17 103 4.18




HAY

e Store many values in each row
e Allowing data point to be retrieved at a higher speed

e Rows containing data from a single time series to wind
up near one another on disk

Time series ID Columns are named by sample
Time-window time offset within time window

start time

J +0 +3 +7 +11 +17 L

101 15:51:00 0.01

101 15:52:00 0.04 0.08

102 15:51:00 1.16

103 15:53:00 4.18

Row key Data values




Z_ ra87EaY NoSQL DB with Hybrid Design KA@
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e Collapse all of data foe a row into a single data structure known
as blob

e Blob can be highly compressed so that less data needs to be read
from disk

Hourly

Time series ID Columns are named by sample Compressed rows have accumulator
Time-window time offset within time window a single column (blob maker)
start time
I " 1
+0 +3 +7 +11 +17 compressed

101 15:51:00 {t:[0],v:[0.01]}

101 15:52:00 {t:(7,11],v:[0.04,0.08]} Data Data

102 15:51:00 1.16 sources catcher Renderer

103 15:53:00 4.18

Row key Data values




KACRA

The blob maker uses incoming data from a memory cache
The full data stream is only written to the memory cache

Data is not written to the storage tier until it is compressed
into blobs

Hourly
accumulator
(blob maker)

Data
sources

Data
catcher

In-memory
cache

Restart
logs

~—

HBase /
MapR DB

Tf

Renderer —p»
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e In OpenTSDB, a time series data
point consists of:

e A metric name.

e A UNIX timestamp (seconds or

- . . Server Server
millisecinds since Epoch).

e Avalue (64 bit integer or single-

isi ' ' TSD RPC
precision floating point value). I Grafana ' ) TSD RPC

e A set of tags (key-value pairs) that HTe

describe the time series the point HTTP

belongs to. REST/
HTTP

e Data collectors
e Time-series daemons (TSD)

e User interface functions

TSD

e Scripts/Tools




Direct Blob Loading for High p
Performance >

e Data is ingested initially to the storage tier in the blob-
oriented format that stores many data points per row

Time series daemon (TSD)
Collector
— Data In memory
gateway cache
| API
Collector T
"
i
MapR
Blob maker Sg/
HBase
—

S
Restart
logs
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(AR ER Rapid Loading of Historical Dat
{_EaX7E3 Rapid Loading of Historical Data Q'_(A/'BRA

e Separate data flow that loads data in blob-style format
directly to the storage tier independently of the TSD

Server
Collector

Server

Collector

Grafana

TSD TSD
OpenTSDB | —%
Ul /
, Blob Loader -
Scripts
T
HBase
or
MapR DB
Blob Loader
T —




ARV ERY Accessing Data with OpenTSDB
_ : p KACRA

e Steps to transform raw data into processed data:
e selection
® grouping
e down-sampling
e aggregation
e interpolation

e rate conversion




Step 3

Place a unified
mediator to
distribute the
job across nodes
and different
layers

SW (Existing Code)
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SPARK KACRA
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e |nitially developed for two applications where keeping data in memory
helps

e Open source project at the U.C. Berkeley AMPLab Spq

e jterative algorithms (common in machine learning)
e interactive data mining

e Compared to MapReduce, Spark differs in two things
e Spark holds intermediate results in memory (rather than writing
them to disk)
e Spark supports more than just map and reduce functions (greatly

expanding the set of possible analyses that can be executed over
HDFS data)




Spark
Spark SQLE streaming
& Shark real-time

processing

\Y/|fe

machine
learning

GraphX

graph
processing

Spark Core

Standalone Scheduler YARN

Mesos




Step 4

Make
Integration
seamless

SW (Existing Code)

HBase

)
\eiyos”
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e Distributed, reliable, available service for efficiently coIIecting},ﬁf
aggregating and moving large amounts of data X

e Simple and flexible architecture based on streaming data
flows

e Components:
e Fvent - data being collected

e flume Agent - source (where the data comes from),

channel (repository for the data), sink (next destination for
the data)




Channel
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Channel
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Agent Chaining KAG/RR

(T CF
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Channel
T Aeen

bar

foo
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Consolidation
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Multiplexing
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Step 5 KA

Adding top-level tools:

e Hue Hue SW (Existing Code) grraztaﬂ,ry‘g

e Grafana

Spark

HBase

\v) \v) \v) \v) \v) \\_/.)
% 5>
u-
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HUE

<o)
KACRA

ehue

e Graphical front-end to developer and administrator functionality

e Hadoop User Experience

e Developed by Cloudera and released as Open Source
e Extensible (publically-available API)

e Web based

e Integrated with Hadoop tools

e j.e. HDFS file browser, HBase browser, ZooKeeper browser, Spark editor
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Data Browsers v Workflows v Search

= Job Browser &5 cloudera v (2]

[ File Browser

due 4

uery Editors v Security v
ry ty

B File Browser
£ Actions v

Search for file name X Move to trash Vv

A Home / user/ cloudera ¢

Name Size User Group
) hdfs supergroup
T cloudera cloudera
B .Trash cloudera cloudera
B .staging cloudera cloudera

show 45 | of 2items

®Upload v  © New v

[ Files

i Zip/Tgz file @ Trash
Permissions Date
drwxr-xr-x January 25, 2015 01:09 AM
drwxr-xr-x February 03, 2015 03:04 AM
drwxr-xr-x January 28, 2015 04:44 AM
drwx-—— February 04, 2015 02:31 AM

Page 1 of 1
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Screenshot 2

C =

ue )
&% Hive Editor

Navigator

Settings

DATABASE

Query Editors Vv

Query Editor

| default

Table name...

B8 page_view
B8 tweets
B8 business
(D city (string)
D review_count (int)
D name (string)
M neighborhoods (string
D type (string)
(D business_id (string)
D full_address (string)
(D state (string)
D longitude (float)
(D stars (float)
[ latitude (float)
D open (boolean)
D categories (string)
88 top_cool4_hbase
B8 top_reviews
&8 review
&8 top_cool
B8 top_cool_hbase
B8 timestamp_invalid_data
B8 test_partitions

B8 counties
BB hanke

1

Data Browsers v Workflows v Search Vv I File Browser & Job Browser & romain v (7] =] [CJ
My Queries Saved Queries History
Sample: Salary growth saiary growth (sorted) from 2007-08 L
1 SELECT s07.description, s@7.salary, s08.salary,
2 s08.salary - s07.salary
3 FROM
-4 sample 07 s07 JOIN sample 08 s08
5 ON ( s07.code = s08.code)
6 WHERE
7 s07.salary < s08.salary
8 ORDER BY s08.salary-s07.salary DESC
9 LIMIT 20
m Save Saveas... Explain orcreatea New query
® e
Recent queries Query Log Columns Results Chart
Charttype @l .a @ X-Axis description v Y-Axis salary v
200000
—O— —0— —O— M salary
—9—
150000 —0— —0— —0—
—O— —O—
100000
- m m m m
0
Dentists, all Surgeons Oraland Natural Physicians Orthodontistiternists, Political Obstetricians Chief Rotary drillPediatriciar@ociologistsFamily and Medical ~ Athletes ~ Animal  Dentists, Education Psychologists,
other maxillofacial sciences and general scientists and executives operators, general general scientists, and sports scientists general administratorall other
specialists surgeons managers surgeons, gynecologists oil and gas practitioners except competitors postsecondary

all other

epidemiologists
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a uery Editors v Data Browsers v orkflows v Search v ile Browser £ Job Browser % romain v (2] =)
Search = Apache Logs impala © hive o = |+ n V4 & % O @
1nanana (328)
- O Grouped@® Stacked lll Enable selection @ China (1743) © United States (5333)@ India (1007) |
Brazil (289) 73
Show more...
60
extension
50
css 40
30
20 == |
png
10 — m ——
-_—_ ] s Bl — || I Bl _—
js 12:15:49 01:05:49 01:55:49 02:45:49 03:35:49 04:25:49 05:15:49 06:05:49 06:55:49 07:45:49
2014-05-04 2014-05-04 2014-05-04 2014-05-04 2014-05-04 2014-05-04 2014-05-04 2014-05-04 2014-05-04 2014-05-04

country_code3 region_code

user_agent_family

4,595
4,000
3,000
2,000
1,000

Googlebo

0
Chrome t
Firefox IE
Grid Results
bytes i <
Filter fields Showing 1 to 40 of 8083 results &
0 - 900000 (8083)
900000 - 1800000 (0) All (28) / Current (4) code app request bytes
1800000 - 2700000 (0) a Field Name » 302 impala GET /impalallist_designs?qg-page=1&q-type=impala HTTP/1.0 446
2700000 - 3600000 (0) O _version » 200 impala GET /impala/list_designs?g-page=1&q-type=impala HTTP/1.0 10839
- 1 —

3600000 - 4500000 (0) . » 302 impala GET /impala/query_history?q-type=impala&q-user=rw1hd7z&g-auto_query=off HTTP/1.1
4500000 - 5400000 (0) ¥ app

<




Grafana

Grafand

e (Open source

e Feature rich metrics dashboards and graph editor for
OpenTSDB

e Rich graphing: fast and flexible client side graphs with a
multitude of options

e Mixed styling

e Dashboards: drag and drop panels, change row and panel
width easily

e Annotations
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~afl Grafana Dashboard Zoom Ou an hour ago to 6 minutes ago v

server requests logins

50.0 Wiy /AWWM“‘WMMrMW«hMWJWNM

L‘\‘ A _‘.\A‘h“ .

0.0
10:00 10:10 10:20 10:30 10:40 10:50 10:00 10:10 10:30

50 Min: 0.10 Max: 37.30

= web_server_01 ==web_server_02 web_server_03 == logins Current: 22 )
web_server_04 == |0gins (-1 hour) Current: 25.40 Min: 0.10 Max: 37.70

Memory / CPU client side full page load

28.6 MiB

0:30

0 \I- .I'II I!!I
0.0
0:00 0:20 0:3 40

== memory Current: 21.46 MiB upper_25 Avg: 3.41ms ==upper_50 Avg: 201.78 ms ==upper_75 Avg

Min: 97.66 KiB == Upper_90 Avg: 1.11s upper_95 Avg: 1.66 s
cpu Current: 0.20 Min: 0.10

degh btudl
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Step 5

Empowering the
architecture:

e Machine Learning
e Third-party Access

e ... and more

SW (Existi

REST

Spark

HBase

,
L)
TS Z
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MAHOUT  KACRA

Distributed and scalable machine learning algorithms on the
Hadoop platform:

. Collal e filtar
e Clustering

e Classification

e Dimensionality Reduction

Use cases:
e Yahoo —> spam detection
e Foursquare —>recommendations
e Adobe —> user targeting

e Amazon —> personalization platform




Mahoot 101 KA

Classification:

e Logistic Regression - trained via SGD

e Naive Bayes / Complementary Naive Bayes
e Random Forest

e Hidden Markov Models

e Multilayer Perceptron




Mahoot 101

Clustering:

e k-Means Clustering
e Fuzzy k-Means
e Streaming k-Means

e Spectral Clustering




Mahoot 101

Dimensionality Reduction:

e Singular Value Decomposition
e Lanczos Algorithm

e Stochastic SVD

e PCA (via Stochastic SVD)

e QR Decomposition




REST APIs KAGRA

Make easier the integration with third-parties, including:
e External software
e Scientific Partners

e Data Analysis Tools
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Final Result

The overall
architecture is
mantained by
ZOOKEPER

Hue

SW (Existing Code)

Interface Adapter

Graphana
(or Metrilyx)

REST
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ZOOKEEPER  KACRA

e “ZooKeeper allows distributed processes to coordinate with .
each other through a shared hierarchical name space of
data register” (ZooKeeper Wiki)

e An open source, high-performance coordination service
for distributed applications

e Service for maintaining configuration information, naming,
providing distributed synchronization and providing group
services




CRA

ZOOKEPER EXAMPLE &

Zookeeper

HRegionServer
HRegion
Store

SN Vemstore |
StoreFile TN

| HFile |

r---------

DFS Client

ANEEEEN EEEJEEE EEEJEEE - DFS Client

DataNode DataNode DataNode DataNode DataNode

HDFS

www.edureka.in/hadoop
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Overview: Legacy M

This is where
the domain
knowledge s [ e

preserved.

P S N S S —

SW (Existing Code)
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Overview: HDFS

KA

Distributed/
Redundant
File System

R

>
[ m
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Vertical
NoSQL
Database

HBase
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Overview: OpenTSDB &

Time Series
DBMS




Enhanced
Map-Reduce

Spark
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Data Gathering
and Integration

R

>
[ m
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Web
Administration




Overview: Mahoot

Machine
Learning
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Time Series
Visualizaion

Graphana
(or Metrilyx)
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Overview: REST APIs KAGRA

Third-
Parties REST
Integration
Umversni
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PROGRAMME

07k Overview: Zookeeper &(A/G/RR

Coordination

LLI
L 0

)

b

“é: )
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Outline KA

e Big Data

e Hadoop & Map-Reduce

e HDFS vs. NFS

e Evolving towards a Big Data architecture
* FPGA co-processing

e Conclusions




_7_ A7k How to deal with complexity KA‘B/RR

— Q_/

* We will need more and e
more computational power. - R
. TR
e More Moore: B oo
e + integration scale i
’ 80088?0.
o 4 CIOCk freq uency 1,00297:004 le75 | 1em0 | 1985 19‘90Year19‘95 2000 2005 2010 2015
10000
e More than Moore:
1000
° SyStem On Chip (SOC) Micron ple
e FPGA ! 100
0.01 10
1990 2000 2010 2020




FPGA in SoC KA

e Systems-on-Chips
e Faster
e Less power

¢ FPGA

e Programmable Hardware
Xilinx

Single- or Dual-Core Processor
HPSI/O

Hard Processor System (HPS) .
CETEN o e | @ Silicon Convergence
FPGA L1 Cache x2) 02)
RC . .
I oo | oS e Reconfigurable Computing
JTAG 64-KB Timers SPI CAN
Debug(Trace(’ RAM (x11) (x2) (x2) .
o
r —T T 1T Make the device you
Hard Memory Flash (12 Flash Ctr MMC (x2)
Controller Shared Multiport DDR HPSto ~ FPGAto FPGA nee d ) W h en yo Uunee d .
$r 1a i.‘:cG.:;;srsa'nd 5-Gbps STDRA? Co?mll‘?m FPfA HTPS Conﬁgluration
Hard PCle”
Altera

*Optional Configuration




KACRA
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Programmable Logic Devices All Programmable Devices All Programmable Devices
Programmable “Logic” First Generation - 28nm Second Generation - 20nm
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e A Bayesian coprocessor based on SoC in
FPGA

s 1‘:,
r I,L‘
- )

e Based on Altera Stratix IV chipset and
Nios Architecture

e Memory on chip

e Bayesian device (Memory Mapped)

e Two levels

T
1
s

U

e Evidence propagation is controlled
via software by Nios processor

e Cligue computation is perfumed by
hardware
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N
wv
|

AlilERA

GStratix IV

@
E
i mpPC
g. 2
g mSoC
81,5 -
1 ..
0,5 -
0 —
COLLECT_EVIDENCE DISTRIBUITE_EVIDENCE
PC SoC
COLLECT_EVIDENCE 3.3765 ms 0.1731 ms
DISTRIBUITE_EVIDENCE 3.0313 ms 0.1742 ms
FULL STEP 6.4078 ms 0.3473 ms




HW Native
Support for:

e Analysis

e Time Series
Retrieval

e Data Base
Queries

HBase




e \We eager to establish a collaboration on this topic

e Expected Benefits:

e To build a cutting edge solution

e To train KAGRA people on Big Data IT skills

e To face a challenging project in Big Data storing & retrieval




Outline KAGCRA

e Big Data

e Hadoop & Map-Reduce

e HDFS vs. NFS

e Evolving towards a Big Data architecture
e FPGA co-processing

e Conclusions




. )
Conclusion  KACRA

e Modern technologies for Big Data handling might empower iKAGRA
platform

e Evolution towards an advanced architecture can be seamless, in order
to:
e Make the most value of current software
e Gain experience and training

e Tailor the solution to emerging needs

e Mitigate the risk of failure

e Research ideas: can we boost the architecture by FPGA co-processing
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