Differences between revisions 46 and 72 (spanning 26 versions)
Revision 46 as of 2019-07-13 14:19:46
Size: 8410
Comment:
Revision 72 as of 2020-12-16 11:52:42
Size: 13737
Comment:
Deletions are marked like this. Additions are marked like this.
Line 6: Line 6:

This project is for glitch study. You can see the result on [[https://www.icrr.u-tokyo.ac.jp/~yuzu/bKAGRA_summary/html/|Yuzu Summary]].

Feedback from users are very welcome ! Please inform C. Kozakai and H. Yuzurihara.

== Recent update ==
 *7/13 SNR thresholds are optimized ER trigger rate.

 *7/12 Trigger channel is changed to MICH optimized set.

 *7/10 Changed SNR threshold.
 

Old information is more below.
This project is for glitch and lock loss study. Also applicable to event validation of GW candidate. You can see the result [[https://gwdet.icrr.u-tokyo.ac.jp/~controls/GlitchPlot/index.html|here]].

Original developer: Chihiro Kozakai (production of plots), Hirotaka Yuzurihara (web page).

Line 23: Line 14:
7/12~ and 7/13 11:30~24:00 (MICH ER)

||<:>'''Channel'''||'''SNR threshold (8:00~24:00)'''||'''SNR threshold (0:00~8:00 and 7/13 11:30~24:00)'''||
||IMC-CAV_TRANS_OUT_DQ||<:> veto ||<:> 10 ||
||PSL-PMC_TRANS_DC_OUT_DQ||<:>veto ||<:> 30 ||
||LSC-REFL_PDA1_RF17_Q_ERR_DQ||<:>veto ||<:> 7 ||
||LSC-POP_PDA1_RF17_Q_ERR_DQ||<:>veto ||<:> 7 ||
||LSC-AS_PDA1_RF17_Q_ERR_DQ||<:>veto ||<:> 10 ||
||CAL-CS_PROC_IMC_FREQUENCY_DQ||<:>veto ||<:> 7 ||
||<:>'''Lock state : MICH'''||


6/8 during ER

||<:>'''Channel'''||'''SNR threshold'''||
||LSC-CARM_SERVO_MIXER_DAQ_OUT_DQ||<:> 10 ||
||AOS-TMSX_IR_PD_OUT_DQ||<:> 10 ||
||IMC-MCL_SERVO_OUT_DQ||<:> 30 ||
||IMC-SERVO_SLOW_DAQ_OUT_DQ||<:> 7 ||
||IMC-CAV_TRANS_OUT_DQ||<:> 10 ||
||IMC-CAV_REFL_OUT_DQ||<:> 10 ||
||PSL-PMC_TRANS_DC_OUT_DQ||<:> 30 ||
||PSL-PMC_MIXER_MON_OUT_DQ||<:> 10 ||
||<:>'''Lock state : IMC'''||

Old information is more below.
4/7~4/20 O3GK
||<style="text-align:center">'''Channel''' ||'''SNR threshold''' ||
||K1:CAL-CS_PROC_DARM_DISPLACEMENT_DQ ||<style="text-align:center">100 ||
||<style="text-align:center">'''Lock state : Observation mode (K1:GRD-IFO_STATE_N == 1000)''' ||
Line 51: Line 21:

The main purpose is to study glitches and lock loss by visual inspection. Also, collecting information for glitch database is done through voting form for each glitch event.
Using the result, we aim to do noise hunting, glitch characterization, and labeling for machine learning application.
Here is slides describing how to use: [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=10371|slides]]

GlitchPlot uses trigger information provided by Omicron. GlitchPlot does clustering of the triggers and summarize the trigger information for each events based on the Omicron output. 

For each events, plots for triggered channel and relevant channels are provided on [[https://www.icrr.u-tokyo.ac.jp/~yuzu/bKAGRA_summary/html/|Yuzu Summary]].
The relevant channels are basically chosen from
The main purpose is to study glitches and lock loss by visual inspection. Also, collecting information for glitch database is done through voting form for each glitch event.  Using the result, we aim to do noise hunting, glitch characterization, and labeling for machine learning application.  Here is slides describing how to use: [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=10371|slides]]

GlitchPlot uses trigger information provided by Omicron. GlitchPlot does clustering of the triggers and summarize the trigger information for each events based on the Omicron output.

Also, GlitchPlot uses lock loss information based on lock state information of guardian.


For each events, plots for triggered channel and relevant channels are provided [[https://gwdet.icrr.u-tokyo.ac.jp/~controls/GlitchPlot/index.html|here]]. The relevant channels are basically chosen from
Line 67: Line 36:
Line 72: Line 42:
The parameter for plots are determined based on trigger information.
The parameter for plots are determined based on trigger information. Also, lock state summary around the trigger time is provided.
Line 75: Line 46:
Line 85: Line 55:
 *Time series
  *GPS start time ($gpsstart), end time ($gpsend)
  *Output directory ($outdir)
  *Channel ($chlist[@])
  *Lock state segment bar: flag($lock), guardian channel($lchannel), guardian value($lnumber), segment bar title($llabel)
  *Data file type ($data)

 *
Spectrum
  *List of GPS start time ($gpsstarts30[@]), end time ($gpsend30[@])
  *Output directory ($outdir)
  *Channel ($chlist[@])
  *FFT length ($fft30)
  
 *
Spectrogram
  *
GPS start time ($gpsstart), end time ($gpsend)
  *Output directory ($outdir)
  *Channel ($chlist[@])
  *Lock state segment bar: flag($lock), guardian channel($lchannel), guardian value($lnumber), segment bar title($llabel)
  *FFT length ($fft)
  *Stride ($stride)
  *
With and without whitening

 *Coherencegram
  *
GPS start time ($gpsstart), end time ($gpsend)
  *Output directory ($outdir)
  *Channel ($channel) $chlist[@]
  *
Lock state segment bar: flag($lock), guardian channel($lchannel), guardian value($lnumber), segment bar title($llabel)
  *FFT length ($fft)
  *Stride ($stride)

 *Q-transform (Under testing. GWp
y default parameter is used.)
  *
GPS start time ($gpsstart), end time ($gpsend)
  *Output directory ($outdir)
  *Channel ($chlist[@])
  *Lock state segment bar: flag($lock), guardian channel($lchannel), guardian value($lnumber), segment bar title($llabel)

 *Lock segment summary
  *GPS start time ($gpsstart), end time ($gpsend)
  *Output directory ($outdir)
  *Channel ($channel)
  *
Trigger time ($gpstime) and duration ($max_duration)
 * Time series
  * GPS start time ($gpsstart), end time ($gpsend)
   * The center is the trigger time.
   * Time span is roughly larger one of [4sec, trigger duration * 10]. (Adjusted to fit the spectrogram requirement)
  *
Output directory ($outdir)
  * Channel ($chlist[@])
  * Lock state segment bar: flag($lock), guardian channel($lchannel), guardian value($lnumber), segment bar title($llabel)
  * Data file type ($data)
   * Full data is used.
  * If time span is too long, down sample is applied.

 *
Spectrum
  * List of GPS start time ($gpsstarts30[@]), end time ($gpsend30[@])
   * Trigger time and 2sec before and after the trigger is avoided.
   * About 30 sec is used each before trigger and after trigger spectrum.
   * The length is adusted to the multiple of the FFT length.
  *
Output directory ($outdir)
  * Channel ($chlist[@])
  * FFT length ($fft30)
   * 1/band width (Adjusted to the nearest 2^n sec.)

 *
Spectrogram, coherencegram
  *
GPS start time ($gpsstart), end time ($gpsend)
   * The center is the trigger time.
   * Time span is roughly larger one of [4sec, trigger duration * 10].
   * The length is adjusted to be Stride * n
  *
Output directory ($outdir)
  * Channel ($chlist[@])
  * Lock state segment bar: flag($lock), guardian channel($lchannel), guardian value($lnumber), segment bar title($llabel)
  * Stride ($stride)
   * To have enough time resolution to see the glitch.
  *
FFT length ($fft)
   * stride = FFT length * n
  * With and without whitening (
Spectrogram)

 * Q-transform (Under testing. G
Wpy default parameter is used.)
  *
GPS start time ($gpsstart), end time ($gpsend)
  * Output directory ($outdir)
  * Channel ($chlist[@])
  *
Lock state segment bar: flag($lock), guardian channel($lchannel), guardian value($lnumber), segment bar title($llabel)

 * Lock segment summar
y
  *
GPS start time ($gpsstart), end time ($gpsend)
   * Same as time series
  *
Output directory ($outdir)
  * Channel ($channel)
  *
Trigger time ($gpstime) and duration ($max_duration)
   * Taken from Omicron information
Line 130: Line 107:
Master branch: On Kamioka server, plotter.sh runs by crontab every 15 min. plotter.py is called. it gives clustered Omicron trigger information as a text file. The text files are sent to Kashiwa server by rsync. 

kashiwa branch: On Kashiwa sercer, GlitchPlot.sh runs by crontab every 15 min. Using text file sent from Kamioka, condor_jobfile_plotter.sh runs to throw jobs into condor to make plots. 
Master branch: On Kamioka server, plotter.sh runs by crontab every 15 min. plotter.py is called. it gives clustered Omicron trigger information as a text file. The text files are sent to Kashiwa server by rsync.

kashiwa branch: On Kashiwa sercer, GlitchPlot.sh runs by crontab every 15 min. Using text file sent from Kamioka, condor_jobfile_plotter.sh runs to throw jobs into condor to make plots.

=== Job structure ===
1. On k1sum1:
By crontab, {{{4-59/15 * * * * /users/DET/tools/GlitchPlot/Script/plotter.sh > /tmp/GlitchPlot.log 2>&1}}}
2. On detchar@m31-01:

3. On k1det0:
By crontab, {{{30 */3 * * * /users/DET/tools/GlitchPlot/Script/GlitchPlot_html.sh > /tmp/GlitchPlot.log}}}

=== Note for developer ===
* It is better to use low-latency pipeline result for RRT. CBC and burst pipeline configuration is under constructing.
* Please reconsider channel list. At least, SRCL related chanels will be required. ASC maybe also important.
* Top page maybe better to start from the latest date.
Line 135: Line 125:
Line 137: Line 126:
8/15~ (X-arm nightly, only time with K1:MIF-WE_ARE_DOING_NOTHING == 1)
||<style="text-align:center">'''Channel''' ||'''SNR threshold''' ||
||CAL-CS_PROC_XARM_FREQUENCY_DQ ||<style="text-align:center">21 ||
||<style="text-align:center">'''Lock state : X-arm''' ||




8/10~ (X-arm nightly, only time with K1:MIF-WE_ARE_DOING_NOTHING == 1)
||<style="text-align:center">'''Channel''' ||'''SNR threshold''' ||
||CAL-CS_PROC_XARM_FREQUENCY_DQ ||<style="text-align:center">21 ||
||LSC-CARM_SERVO_MIXER_DAQ_OUT_DQ ||<style="text-align:center">15 ||
||AOS-TMSX_IR_PD_OUT_DQ ||<style="text-align:center">15 ||
||IMC-SERVO_SLOW_DAQ_OUT_DQ ||<style="text-align:center">12 ||
||IMC-CAV_TRANS_OUT_DQ ||<style="text-align:center">45 ||
||PSL-PMC_TRANS_DC_OUT_DQ ||<style="text-align:center">35 ||
||<style="text-align:center">'''Lock state : X-arm''' ||




7/25~ (only 0:00~8:00)
||<style="text-align:center">'''Channel''' ||'''Requirement''' ||
||IMC-CAV_TRANS_OUT_DQ ||<style="text-align:center">Lock loss ||
||PSL-PMC_TRANS_DC_OUT_DQ ||<style="text-align:center">Lock loss ||
||LSC-REFL_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">Lock loss ||
||LSC-POP_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">Lock loss ||
||LSC-AS_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">Lock loss ||
||CAL-CS_PROC_IMC_FREQUENCY_DQ ||<style="text-align:center">Lock loss ||
||<style="text-align:center">'''Lock state : MICH''' ||




7/19~ (only 0:00~8:00)
||<style="text-align:center">'''Channel''' ||'''SNR threshold''' ||
||IMC-CAV_TRANS_OUT_DQ ||<style="text-align:center">45 ||
||PSL-PMC_TRANS_DC_OUT_DQ ||<style="text-align:center">40 ||
||LSC-REFL_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">16 ||
||LSC-POP_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">18 ||
||LSC-AS_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">25 ||
||CAL-CS_PROC_IMC_FREQUENCY_DQ ||<style="text-align:center">25 ||
||<style="text-align:center">'''Lock state : LSC''' ||




7/13 (MICH ER)
||<style="text-align:center">'''Channel''' ||'''SNR threshold''' ||
||IMC-CAV_TRANS_OUT_DQ ||<style="text-align:center">35 ||
||PSL-PMC_TRANS_DC_OUT_DQ ||<style="text-align:center">30 ||
||LSC-REFL_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">6 ||
||LSC-POP_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">8 ||
||LSC-AS_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">15 ||
||CAL-CS_PROC_IMC_FREQUENCY_DQ ||<style="text-align:center">15 ||
||<style="text-align:center">'''Lock state : LSC''' ||


Line 139: Line 187:

||<:
>'''Channel'''||'''SNR threshold (8:00~24:00)'''||'''SNR threshold (0:00~8:00 and 7/13 11:30~24:00)'''||
||IMC-CAV_TRANS_OUT_DQ||<:> veto ||<:> 10 ||
||PSL-PMC_TRANS_DC_OUT_DQ||<:>veto ||<:> 30 ||
||LSC-REFL_PDA1_RF17_Q_ERR_DQ||<:>veto ||<:> 30 ||
||LSC-POP_PDA1_RF17_Q_ERR_DQ||<:>veto ||<:> 30 ||
||LSC-AS_PDA1_RF17_Q_ERR_DQ||<:>veto ||<:> 30 ||
||CAL_CS_PROC_IMC_FREQUENCY_DQ||<:>veto ||<:> 30 ||
||<:>'''Lock state : MICH'''||

7/10~   ||<:>'''Channel'''||'''SNR threshold (8:00~24:00)'''||'''SNR threshold (0:00~8:00)'''||
||IMC-CAV_TRANS_OUT_DQ||<:> veto ||<:> 20 ||
||PSL-PMC_TRANS_DC_OUT_DQ||<:>veto ||<:> 40 ||
||PEM-ACC_MCF_TABLE_REFL_Z_OUT_DQ||<:>veto ||<:> 40 ||
||PEM-ACC_PSL_PERI_PSL1_Y_OUT_DQ||<:>veto ||<:> 20 ||
||PEM-MIC_PSL_TABLE_PSL4_Z_OUT_DQ||<:>veto ||<:> 20 ||
||<:>'''Lock state : IMC'''||
||<style="text-align:center">'''Channel''' ||'''SNR threshold (8:00~24:00)''' ||'''SNR threshold (0:00~8:00 and 7/13 11:30~24:00)''' ||
||IMC-CAV_TRANS_OUT_DQ ||<style="text-align:center">veto ||<style="text-align:center">10 ||
||PSL-PMC_TRANS_DC_OUT_DQ ||<style="text-align:center">veto ||<style="text-align:center">30 ||
||LSC-REFL_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">veto ||<style="text-align:center">30 ||
||LSC-POP_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">veto ||<style="text-align:center">30 ||
||LSC-AS_PDA1_RF17_Q_ERR_DQ ||<style="text-align:center">veto ||<style="text-align:center">30 ||
||CAL_CS_PROC_IMC_FREQUENCY_DQ ||<style="text-align:center">veto ||<style="text-align:center">30 ||
||<style="text-align:center">'''Lock state : MICH''' ||




7/10~
||<style="text-align:center"
>'''Channel''' ||'''SNR threshold (8:00~24:00)''' ||'''SNR threshold (0:00~8:00)''' ||
||IMC-CAV_TRANS_OUT_DQ ||<style="text-align:center">veto ||<style="text-align:center">20 ||
||PSL-PMC_TRANS_DC_OUT_DQ ||<style="text-align:center">veto ||<style="text-align:center">40 ||
||PEM-ACC_MCF_TABLE_REFL_Z_OUT_DQ ||<style="text-align:center">veto ||<style="text-align:center">40 ||
||PEM-ACC_PSL_PERI_PSL1_Y_OUT_DQ ||<style="text-align:center">veto ||<style="text-align:center">20 ||
||PEM-MIC_PSL_TABLE_PSL4_Z_OUT_DQ ||<style="text-align:center">veto ||<style="text-align:center">20 ||
||<style="text-align:center">'''Lock state : IMC''' ||


Line 160: Line 212:

||<:
>'''Channel'''||'''SNR threshold (8:00~24:00)'''||'''SNR threshold (0:00~8:00)'''||
||IMC-CAV_TRANS_OUT_DQ||<:> 100 ||<:> veto ||
||PSL-PMC_TRANS_DC_OUT_DQ||<:>100 ||<:> veto ||
||PEM-ACC_MCF_TABLE_REFL_Z_OUT_DQ||<:>100 ||<:> veto ||
||PEM-ACC_PSL_PERI_PSL1_Y_OUT_DQ||<:>100 ||<:> veto ||
||PEM-MIC_PSL_TABLE_PSL4_Z_OUT_DQ||<:>100 ||<:> veto ||
||<:>'''Lock state : IMC'''||
||<style="text-align:center">'''Channel''' ||'''SNR threshold (8:00~24:00)''' ||'''SNR threshold (0:00~8:00)''' ||
||IMC-CAV_TRANS_OUT_DQ ||<style="text-align:center">100 ||<style="text-align:center">veto ||
||PSL-PMC_TRANS_DC_OUT_DQ ||<style="text-align:center">100 ||<style="text-align:center">veto ||
||PEM-ACC_MCF_TABLE_REFL_Z_OUT_DQ ||<style="text-align:center">100 ||<style="text-align:center">veto ||
||PEM-ACC_PSL_PERI_PSL1_Y_OUT_DQ ||<style="text-align:center">100 ||<style="text-align:center">veto ||
||PEM-MIC_PSL_TABLE_PSL4_Z_OUT_DQ ||<style="text-align:center">100 ||<style="text-align:center">veto ||
||<style="text-align:center">'''Lock state : IMC''' ||

Line 171: Line 224:

||<:
>'''Channel'''||'''SNR threshold'''||
||LSC-CARM_SERVO_MIXER_DAQ_OUT_DQ||<:> 10 ||
||AOS-TMSX_IR_PD_OUT_DQ||<:> 10 ||
||IMC-MCL_SERVO_OUT_DQ||<:> 30 ||
||IMC-SERVO_SLOW_DAQ_OUT_DQ||<:> 7 ||
||IMC-CAV_TRANS_OUT_DQ||<:> 10 ||
||IMC-CAV_REFL_OUT_DQ||<:> 10 ||
||PSL-PMC_TRANS_DC_OUT_DQ||<:> 30 ||
||PSL-PMC_MIXER_MON_OUT_DQ||<:> 10 ||
||<:>'''Lock state : IMC'''||
||<style="text-align:center">'''Channel''' ||'''SNR threshold''' ||
||LSC-CARM_SERVO_MIXER_DAQ_OUT_DQ ||<style="text-align:center">10 ||
||AOS-TMSX_IR_PD_OUT_DQ ||<style="text-align:center">10 ||
||IMC-MCL_SERVO_OUT_DQ ||<style="text-align:center">30 ||
||IMC-SERVO_SLOW_DAQ_OUT_DQ ||<style="text-align:center">7 ||
||IMC-CAV_TRANS_OUT_DQ ||<style="text-align:center">10 ||
||IMC-CAV_REFL_OUT_DQ ||<style="text-align:center">10 ||
||PSL-PMC_TRANS_DC_OUT_DQ ||<style="text-align:center">30 ||
||PSL-PMC_MIXER_MON_OUT_DQ ||<style="text-align:center">10 ||
||<style="text-align:center">'''Lock state : IMC''' ||


Line 184: Line 239:

||<:
>'''Channel'''||'''SNR threshold'''||
||IMC-CAV_TRANS_OUT_DQ||<:> 100 ||
||PSL-PMC_TRANS_DC_OUT_DQ||<:> 100 ||
||PEM-ACC_MCF_TABLE_REFL_Z_OUT_DQ||<:> 100 ||
||PEM-ACC_PSL_PERI_PSL1_Y_OUT_DQ||<:> 100 ||
||PEM-MIC_PSL_TABLE_PSL4_Z_OUT_DQ||<:> 100 ||
||<:
>'''Lock state : IMC'''||
||<style="text-align:center">'''Channel''' ||'''SNR threshold''' ||
||IMC-CAV_TRANS_OUT_DQ ||<style="text-align:center">100 ||
||PSL-PMC_TRANS_DC_OUT_DQ ||<style="text-align:center">100 ||
||PEM-ACC_MCF_TABLE_REFL_Z_OUT_DQ ||<style="text-align:center">100 ||
||PEM-ACC_PSL_PERI_PSL1_Y_OUT_DQ ||<style="text-align:center">100 ||
||PEM-MIC_PSL_TABLE_PSL4_Z_OUT_DQ ||<style="text-align:center">100 ||
||<style="text-align:center"
>'''Lock state : IMC''' ||


Line 194: Line 251:

||<:
>'''Channel'''||'''SNR threshold'''||
||LSC-CARM_SERVO_MIXER_DAQ_OUT_DQ||<:> 100 ||
||AOS-TMSX_IR_PD_OUT_DQ||<:> 100 ||
||IMC-MCL_SERVO_OUT_DQ||<:> 30 ||
||IMC-SERVO_SLOW_DAQ_OUT_DQ||<:> 7 ||
||IMC-CAV_TRANS_OUT_DQ||<:> 10 ||
||IMC-CAV_REFL_OUT_DQ||<:> 10 ||
||PSL-PMC_TRANS_DC_OUT_DQ||<:> 30 ||
||PSL-PMC_MIXER_MON_OUT_DQ||<:> 10 ||
||<:>'''Lock state : X-arm'''||
||<style="text-align:center">'''Channel''' ||'''SNR threshold''' ||
||LSC-CARM_SERVO_MIXER_DAQ_OUT_DQ ||<style="text-align:center">100 ||
||AOS-TMSX_IR_PD_OUT_DQ ||<style="text-align:center">100 ||
||IMC-MCL_SERVO_OUT_DQ ||<style="text-align:center">30 ||
||IMC-SERVO_SLOW_DAQ_OUT_DQ ||<style="text-align:center">7 ||
||IMC-CAV_TRANS_OUT_DQ ||<style="text-align:center">10 ||
||IMC-CAV_REFL_OUT_DQ ||<style="text-align:center">10 ||
||PSL-PMC_TRANS_DC_OUT_DQ ||<style="text-align:center">30 ||
||PSL-PMC_MIXER_MON_OUT_DQ ||<style="text-align:center">10 ||
||<style="text-align:center">'''Lock state : X-arm''' ||


Line 207: Line 266:
 *7/13 SNR thresholds are optimized ER trigger rate.

 *7/12 Trigger channel is changed for MICH optimized set.

 *7/10 Changed SNR threshold.

 *7/9 Bug fix for SNR threshold lowering.     *7/5 SNR threshold is lowered during 0am-8am. Instead, daytime events are all rejected.

 *7/5 Missing plot for PEM trigger channel is fixed.

 *7/4 ER events are reprocessed.    *7/4 Started this wiki.
 * 8/20 Test version for data analysis pipeline result [[https://www.icrr.u-tokyo.ac.jp/~yuzu/bKAGRA_summary/html/20190713_GlitchPlot_locked_cbc.html|CBC]] [[https://www.icrr.u-tokyo.ac.jp/~yuzu/bKAGRA_summary/html/20190713_GlitchPlot_locked_burst.html|Burst]]

 * 8/14 Only main channel trigger is used.

 * 8/10 For daily run, both glitch and lockloss are monitored during nightly data taking. Trigger list is updated to adapt X-arm configuration.

 * 7/24 For daily run, only lock loss events will be monitored.

 * 7/19 Glitch events in ER on 7/13 are reprocessed. [[https://www.icrr.u-tokyo.ac.jp/~yuzu/bKAGRA_summary/html/20190713_GlitchPlot.html|Yuzu summary]]

 *
7/13 SNR thresholds are optimized ER trigger rate.

 * 7/12 Trigger channel is changed for MICH optimized set.

 * 7/10 Changed SNR threshold.

 * 7/9 Bug fix for SNR threshold lowering.

 *
7/5 SNR threshold is lowered during 0am-8am. Instead, daytime events are all rejected.

 * 7/5 Missing plot for PEM trigger channel is fixed.

 * 7/4 ER events are reprocessed.

 *
7/4 Started this wiki.

GlitchPlot

This project is for glitch and lock loss study. Also applicable to event validation of GW candidate. You can see the result here.

Original developer: Chihiro Kozakai (production of plots), Hirotaka Yuzurihara (web page).

The latest trigger channel list

4/7~4/20 O3GK

Channel

SNR threshold

K1:CAL-CS_PROC_DARM_DISPLACEMENT_DQ

100

Lock state : Observation mode (K1:GRD-IFO_STATE_N == 1000)

Overview

The main purpose is to study glitches and lock loss by visual inspection. Also, collecting information for glitch database is done through voting form for each glitch event. Using the result, we aim to do noise hunting, glitch characterization, and labeling for machine learning application. Here is slides describing how to use: slides

GlitchPlot uses trigger information provided by Omicron. GlitchPlot does clustering of the triggers and summarize the trigger information for each events based on the Omicron output.

Also, GlitchPlot uses lock loss information based on lock state information of guardian.

For each events, plots for triggered channel and relevant channels are provided here. The relevant channels are basically chosen from

  • Trigger channel
  • Unsafe channels
  • Important upstream channels
  • Relevant VIS channels
  • PEM near the trigger channel sensor

Using Kozapy batch codes, following plots are provided:

  • Time series
  • Spectrum before trigger and after trigger
  • Spectrogram
  • Coherencegram with trigger channel
  • Q-transform (Under testing)

The parameter for plots are determined based on trigger information. Also, lock state summary around the trigger time is provided.

Specification detail

Trigger clustering

For the trigger clustering method, please refer p3 of slides.

Plot channel list

For the exact channel list for each trigger, please refer $channelname.dat in GlitchPlot github.

Plot parameter

For the exact method for plot parameter determination, please refer plotter.py and condor_jobfile_plotter.sh in GlitchPlot github. The intent and the variable name in the shell script is as follows.

  • Time series
    • GPS start time ($gpsstart), end time ($gpsend)
      • The center is the trigger time.
      • Time span is roughly larger one of [4sec, trigger duration * 10]. (Adjusted to fit the spectrogram requirement)
    • Output directory ($outdir)
    • Channel ($chlist[@])
    • Lock state segment bar: flag($lock), guardian channel($lchannel), guardian value($lnumber), segment bar title($llabel)
    • Data file type ($data)
      • Full data is used.
    • If time span is too long, down sample is applied.
  • Spectrum
    • List of GPS start time ($gpsstarts30[@]), end time ($gpsend30[@])
      • Trigger time and 2sec before and after the trigger is avoided.
      • About 30 sec is used each before trigger and after trigger spectrum.
      • The length is adusted to the multiple of the FFT length.
    • Output directory ($outdir)
    • Channel ($chlist[@])
    • FFT length ($fft30)
      • 1/band width (Adjusted to the nearest 2^n sec.)
  • Spectrogram, coherencegram
    • GPS start time ($gpsstart), end time ($gpsend)
      • The center is the trigger time.
      • Time span is roughly larger one of [4sec, trigger duration * 10].
      • The length is adjusted to be Stride * n
    • Output directory ($outdir)
    • Channel ($chlist[@])
    • Lock state segment bar: flag($lock), guardian channel($lchannel), guardian value($lnumber), segment bar title($llabel)
    • Stride ($stride)
      • To have enough time resolution to see the glitch.
    • FFT length ($fft)
      • stride = FFT length * n
    • With and without whitening (Spectrogram)
  • Q-transform (Under testing. GWpy default parameter is used.)
    • GPS start time ($gpsstart), end time ($gpsend)
    • Output directory ($outdir)
    • Channel ($chlist[@])
    • Lock state segment bar: flag($lock), guardian channel($lchannel), guardian value($lnumber), segment bar title($llabel)
  • Lock segment summary
    • GPS start time ($gpsstart), end time ($gpsend)
      • Same as time series
    • Output directory ($outdir)
    • Channel ($channel)
    • Trigger time ($gpstime) and duration ($max_duration)
      • Taken from Omicron information

Source code

GlitchPlot github.

Master branch: On Kamioka server, plotter.sh runs by crontab every 15 min. plotter.py is called. it gives clustered Omicron trigger information as a text file. The text files are sent to Kashiwa server by rsync.

kashiwa branch: On Kashiwa sercer, GlitchPlot.sh runs by crontab every 15 min. Using text file sent from Kamioka, condor_jobfile_plotter.sh runs to throw jobs into condor to make plots.

Job structure

1. On k1sum1: By crontab, 4-59/15 * * * * /users/DET/tools/GlitchPlot/Script/plotter.sh > /tmp/GlitchPlot.log 2>&1 2. On detchar@m31-01:

3. On k1det0: By crontab, 30 */3 * * * /users/DET/tools/GlitchPlot/Script/GlitchPlot_html.sh > /tmp/GlitchPlot.log

Note for developer

* It is better to use low-latency pipeline result for RRT. CBC and burst pipeline configuration is under constructing. * Please reconsider channel list. At least, SRCL related chanels will be required. ASC maybe also important. * Top page maybe better to start from the latest date.

Info log

Trigger channel list log

8/15~ (X-arm nightly, only time with K1:MIF-WE_ARE_DOING_NOTHING == 1)

Channel

SNR threshold

CAL-CS_PROC_XARM_FREQUENCY_DQ

21

Lock state : X-arm

8/10~ (X-arm nightly, only time with K1:MIF-WE_ARE_DOING_NOTHING == 1)

Channel

SNR threshold

CAL-CS_PROC_XARM_FREQUENCY_DQ

21

LSC-CARM_SERVO_MIXER_DAQ_OUT_DQ

15

AOS-TMSX_IR_PD_OUT_DQ

15

IMC-SERVO_SLOW_DAQ_OUT_DQ

12

IMC-CAV_TRANS_OUT_DQ

45

PSL-PMC_TRANS_DC_OUT_DQ

35

Lock state : X-arm

7/25~ (only 0:00~8:00)

Channel

Requirement

IMC-CAV_TRANS_OUT_DQ

Lock loss

PSL-PMC_TRANS_DC_OUT_DQ

Lock loss

LSC-REFL_PDA1_RF17_Q_ERR_DQ

Lock loss

LSC-POP_PDA1_RF17_Q_ERR_DQ

Lock loss

LSC-AS_PDA1_RF17_Q_ERR_DQ

Lock loss

CAL-CS_PROC_IMC_FREQUENCY_DQ

Lock loss

Lock state : MICH

7/19~ (only 0:00~8:00)

Channel

SNR threshold

IMC-CAV_TRANS_OUT_DQ

45

PSL-PMC_TRANS_DC_OUT_DQ

40

LSC-REFL_PDA1_RF17_Q_ERR_DQ

16

LSC-POP_PDA1_RF17_Q_ERR_DQ

18

LSC-AS_PDA1_RF17_Q_ERR_DQ

25

CAL-CS_PROC_IMC_FREQUENCY_DQ

25

Lock state : LSC

7/13 (MICH ER)

Channel

SNR threshold

IMC-CAV_TRANS_OUT_DQ

35

PSL-PMC_TRANS_DC_OUT_DQ

30

LSC-REFL_PDA1_RF17_Q_ERR_DQ

6

LSC-POP_PDA1_RF17_Q_ERR_DQ

8

LSC-AS_PDA1_RF17_Q_ERR_DQ

15

CAL-CS_PROC_IMC_FREQUENCY_DQ

15

Lock state : LSC

7/12~ and 7/13 11:30~24:00

Channel

SNR threshold (8:00~24:00)

SNR threshold (0:00~8:00 and 7/13 11:30~24:00)

IMC-CAV_TRANS_OUT_DQ

veto

10

PSL-PMC_TRANS_DC_OUT_DQ

veto

30

LSC-REFL_PDA1_RF17_Q_ERR_DQ

veto

30

LSC-POP_PDA1_RF17_Q_ERR_DQ

veto

30

LSC-AS_PDA1_RF17_Q_ERR_DQ

veto

30

CAL_CS_PROC_IMC_FREQUENCY_DQ

veto

30

Lock state : MICH

7/10~

Channel

SNR threshold (8:00~24:00)

SNR threshold (0:00~8:00)

IMC-CAV_TRANS_OUT_DQ

veto

20

PSL-PMC_TRANS_DC_OUT_DQ

veto

40

PEM-ACC_MCF_TABLE_REFL_Z_OUT_DQ

veto

40

PEM-ACC_PSL_PERI_PSL1_Y_OUT_DQ

veto

20

PEM-MIC_PSL_TABLE_PSL4_Z_OUT_DQ

veto

20

Lock state : IMC

7/5~7/9 (buggy setting)

Channel

SNR threshold (8:00~24:00)

SNR threshold (0:00~8:00)

IMC-CAV_TRANS_OUT_DQ

100

veto

PSL-PMC_TRANS_DC_OUT_DQ

100

veto

PEM-ACC_MCF_TABLE_REFL_Z_OUT_DQ

100

veto

PEM-ACC_PSL_PERI_PSL1_Y_OUT_DQ

100

veto

PEM-MIC_PSL_TABLE_PSL4_Z_OUT_DQ

100

veto

Lock state : IMC

6/8 during ER

Channel

SNR threshold

LSC-CARM_SERVO_MIXER_DAQ_OUT_DQ

10

AOS-TMSX_IR_PD_OUT_DQ

10

IMC-MCL_SERVO_OUT_DQ

30

IMC-SERVO_SLOW_DAQ_OUT_DQ

7

IMC-CAV_TRANS_OUT_DQ

10

IMC-CAV_REFL_OUT_DQ

10

PSL-PMC_TRANS_DC_OUT_DQ

30

PSL-PMC_MIXER_MON_OUT_DQ

10

Lock state : IMC

6/12~7/5

Channel

SNR threshold

IMC-CAV_TRANS_OUT_DQ

100

PSL-PMC_TRANS_DC_OUT_DQ

100

PEM-ACC_MCF_TABLE_REFL_Z_OUT_DQ

100

PEM-ACC_PSL_PERI_PSL1_Y_OUT_DQ

100

PEM-MIC_PSL_TABLE_PSL4_Z_OUT_DQ

100

Lock state : IMC

6/7~6/12

Channel

SNR threshold

LSC-CARM_SERVO_MIXER_DAQ_OUT_DQ

100

AOS-TMSX_IR_PD_OUT_DQ

100

IMC-MCL_SERVO_OUT_DQ

30

IMC-SERVO_SLOW_DAQ_OUT_DQ

7

IMC-CAV_TRANS_OUT_DQ

10

IMC-CAV_REFL_OUT_DQ

10

PSL-PMC_TRANS_DC_OUT_DQ

30

PSL-PMC_MIXER_MON_OUT_DQ

10

Lock state : X-arm

Update log

  • 8/20 Test version for data analysis pipeline result CBC Burst

  • 8/14 Only main channel trigger is used.
  • 8/10 For daily run, both glitch and lockloss are monitored during nightly data taking. Trigger list is updated to adapt X-arm configuration.
  • 7/24 For daily run, only lock loss events will be monitored.
  • 7/19 Glitch events in ER on 7/13 are reprocessed. Yuzu summary

  • 7/13 SNR thresholds are optimized ER trigger rate.
  • 7/12 Trigger channel is changed for MICH optimized set.
  • 7/10 Changed SNR threshold.
  • 7/9 Bug fix for SNR threshold lowering.
  • 7/5 SNR threshold is lowered during 0am-8am. Instead, daytime events are all rejected.
  • 7/5 Missing plot for PEM trigger channel is fixed.
  • 7/4 ER events are reprocessed.
  • 7/4 Started this wiki.

KAGRA/Subgroups/DET/GlitchPlot (last edited 2020-12-16 18:00:59 by chihiro.kozakai)