Correlation and Independence

Shuhei Mano
ISM
Detchar tetecon
June 24, 2014

Correlation

The Pearson's product-moment correlation is

$$
\rho_{X, Y}:=\frac{\mathbb{E}[(X-\mathbb{E} X)(Y-\mathbb{E} Y)]}{\sqrt{\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right] \mathbb{E}\left[(Y-\mathbb{E} Y)^{2}\right]}} .
$$

- $-1 \leq \rho_{X, Y} \leq 1$ and $\rho_{X, Y}= \pm 1 \Leftrightarrow Y=c X+d$, a.s. for some const. c, d.
- $X \Perp Y \Rightarrow \rho_{X, Y}=0$, but the reverse does not always hold.

We might want to reject $\boldsymbol{X} \Perp \boldsymbol{Y}$, possibly non-linear relationship.
("association" is general but ambiguous.)

Example

$(X, Y)=(\cos (\Theta), \sin (\Theta)), \quad \Theta \sim(0,2 \pi]$.
\boldsymbol{Y} is non-linearly determined by \boldsymbol{X}, but $\rho_{X, Y}=\mathbf{0}$.

Classics: nonparametric methods

Let $\boldsymbol{R}_{\boldsymbol{i}}$ and $\boldsymbol{S}_{\boldsymbol{i}}, \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{n}$ be rank of the \boldsymbol{i}-th sample point in \boldsymbol{X} and \boldsymbol{Y}, respectively.
Spearman's rank correlation (1904):

$$
\rho_{\text {Spearman }}:=1-\frac{6 \sum_{i}\left(R_{i}-S_{i}\right)^{2}}{n\left(n^{2}-1\right)} .
$$

Kendall rank correlation (1938):

$$
\tau:=\frac{N_{1}-N_{2}}{n(n-1) / 2}
$$

where \boldsymbol{N}_{1} is the number of concordant pairs in \boldsymbol{X} and \boldsymbol{Y}, and $\boldsymbol{N}_{\mathbf{2}}$ is the number of discordant pairs.

Independence

How to test independence?
Here, I will introduce methods based on

- divergence
- characteristic function
- kernel methods

Divergence

Kullback-Leibler divergence between prob. measures \boldsymbol{P} and \boldsymbol{Q} :

$$
D(P \| Q)=\mathbb{E}_{P}\left[\log \frac{P}{Q}\right]
$$

$D(P \| Q)=0 \Leftrightarrow P=Q$.
Let $\boldsymbol{P}=\boldsymbol{P}(\boldsymbol{X}, \boldsymbol{Y})$ and $\boldsymbol{Q}=\boldsymbol{P}(\boldsymbol{X}) \boldsymbol{P}(\boldsymbol{Y})$, mutual information:

$$
I(X, Y):=\mathbb{E}_{P}\left[\log \frac{P(X, Y)}{P(X) P(Y)}\right]
$$

$X \Perp Y \Leftrightarrow I(X, Y)=0$, so test $I(X, Y)=0$.

Remark

- c.f. Independent Component Analysis
- Power divergence:

$$
\mathbb{E}_{P}\left\{\left[\frac{P(X, Y)}{P(X) P(Y)}\right]^{\lambda}-1\right\}
$$

Characteristic Function

Let $\boldsymbol{\phi}_{\boldsymbol{X}, \boldsymbol{Y}}, \boldsymbol{\phi}_{\boldsymbol{X}}$ and $\boldsymbol{\phi}_{\boldsymbol{Y}}$ be characteristic func. of $(\boldsymbol{X}, \boldsymbol{Y}), \boldsymbol{X} \in \mathbb{R}^{\boldsymbol{p}}$ and $Y \in \mathbb{R}^{q}$.
$X \Perp Y \Leftrightarrow \phi_{X, Y}=\phi_{X} \phi_{Y}$, so test $\left\|\phi_{X, Y}-\phi_{X} \phi_{Y}\right\|^{2}=0$, where $\|\cdot\|$ is a distance.
Székely et al. (2007, Ann. Stat. 35: 2769) proposal:
$\mathcal{V}^{2}(X, Y):=\left\|\phi_{X, Y}-\phi_{X} \phi_{Y}\right\|_{W}^{2}=\int\left|\phi_{X, Y}(t, s)-\phi_{X}(t) \phi_{Y}(s)\right|^{2} w(t, s) d t d s$,
with $w(t, s) \propto t^{-1-p} s^{-1-q}$.
Distance correlation:

$$
R^{2}(X, Y):=\frac{V^{2}(X, Y)}{\sqrt{V^{2}(X) V^{2}(Y)}}
$$

Experiments

$$
f(x, y)=[(1+\theta x)(1+\theta y)] \exp (-x-y-\theta x y), x, y>0,0 \leq \theta \leq 1
$$

Székely \& Rizzo (2009) Ann. Appl. Stat. 3: 1236.

Kernel Methods

Reproducing Kernel Hilbert Space: A positive definite kernel \boldsymbol{k} uniquely determine a Hilbert space $\mathcal{H}_{\boldsymbol{k}}$ with

- $k(\cdot, x) \in \mathcal{H}_{k}, \forall x \in \mathcal{X}$.
- Reproducing property:

$$
\langle f(\cdot), k(\cdot, x)\rangle_{\mathcal{H}_{k}}=f(x), \quad \forall x \in \mathcal{X}, \forall f \in \mathcal{H}_{k}
$$

Remark

- Let $\boldsymbol{x} \mapsto \boldsymbol{\Phi}(\boldsymbol{x})=\boldsymbol{k}(\cdot, \boldsymbol{x})$. Inner product in $\boldsymbol{H}_{\boldsymbol{k}}$ is a Grammian:

$$
\left\langle\Phi\left(x_{i}\right), \Phi\left(x_{j}\right)\right\rangle_{\mathcal{H}_{k}}=k\left(x_{i}, x_{j}\right),
$$

so we do not know explicit form of mapping, possibly non-linear.

- c.f. Support Vector Machine

Cross-Covariance Operator

Expectation operator:

$$
m_{X}:=\mathbb{E}[\Phi(X)]=\mathbb{E}[k(\cdot, X)] .
$$

- $\left\langle m_{X}, \boldsymbol{f}\right\rangle=\mathbb{E}[f(X)]$. (c.f. characteristic func.).
- Estimator: $\hat{\boldsymbol{m}}_{X}^{(n)}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{k}\left(\cdot, X_{i}\right)$.

Cross-Covariance operator:

- $\forall f \in \mathcal{H}_{X}, \forall g \in \mathcal{H}_{Y}$,

$$
\left\langle\Sigma_{Y, X} f, g\right\rangle=\mathbb{E}[f(X) g(Y)]-\mathbb{E}[f(X)] \mathbb{E}[g(Y)],
$$

- $\boldsymbol{X} \Perp \boldsymbol{Y} \Leftrightarrow \boldsymbol{\Sigma}_{Y, X}=\mathbf{O}$, so test $\left\|\hat{\boldsymbol{\Sigma}}_{Y, X}\right\|_{\text {Hilbert-Schmidt }}^{2}=\mathbf{0}$ (Gretton et al. 2005 16th ALT).

Randomized Dependence Coefficient

Hirschfeld-Gebelein-Rényi maximum correlation coefficient:

$$
\rho_{X, Y}^{H G R}=\sup _{f, g} \rho_{f(X), g(Y)}
$$

with $X \Perp \boldsymbol{Y} \Leftrightarrow \rho_{X, Y}^{H G R}=\mathbf{0}$. DRC is an "approximation" of $\rho_{X, Y}^{H G R}$ (Lopez-Paz et al. NIPS 2013):

$$
\max _{a, b} \rho_{a^{\prime} \Phi\left(F_{X}(X)\right), b^{\prime} \Phi\left(F_{Y}(Y)\right)}
$$

(c.f. canonical correlation), with

$$
(\Phi(X))_{i, j}=\Phi\left(w_{i}^{\prime} x_{j}+b_{i}\right), \quad 1 \leq i \leq k, 1 \leq j \leq n,
$$

where $\boldsymbol{w}_{\boldsymbol{i}}$ and $\boldsymbol{b}_{\boldsymbol{i}}$ are random variables.

Experiments

Gretton et al. 2008, Advances in NIPS 20, 585.

Experiments

Lopez-Paz et al. NIPS 2013.

