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Introduction

Power	 line	 glitch	 (noise	 transient)

Magnetometer	 channel

	 initial	 LIGO	 ~1,000	 aux	 channels	 

	 advanced	 LIGO	 ~10,000	 aux	 channles

3



Introduction

Ch.1

Ch.2

Ch.n

t1

1 0 0 1…

Ch.1

Ch.2

Ch.n

t2

Ch.1

Ch.2

Ch.n

t3

Ch.1

Ch.2

Ch.n

ti

… MLA glitchy

clean clean

glitchy

SNR$<$8$

MVSC

ANN

418 12. Flexible Discriminants

•

•

•

•

•

• •

•
•

•

•

•

•
•

•
•

•

•

•

•

margin

M = 1
∥β∥

M = 1
∥β∥

xT β + β0 = 0

•

•

•

•

•

• •

•
•

•

•

•

•

•

•
•

•
•

•

•

•

••

margin

ξ∗1ξ
∗
1ξ
∗
1

ξ∗2ξ
∗
2ξ
∗
2

ξ∗3ξ
∗
3

ξ∗4ξ
∗
4ξ
∗
4 ξ∗5

M = 1
∥β∥

M = 1
∥β∥

xT β + β0 = 0

FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/∥β∥. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗j are on the wrong side of their margin by
an amount ξ∗j = Mξj; points on the correct side have ξ∗j = 0. The margin is
maximized subject to a total budget

P
ξi ≤ constant. Hence

P
ξ∗j is the total

distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN ), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xT β + β0 = 0}, (12.1)

where β is a unit vector: ∥β∥ = 1. A classification rule induced by f(x) is

G(x) = sign[xT β + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xT β+β0 = 0. Since the classes are separable, we can find a function
f(x) = xT β + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,∥β∥=1

M

subject to yi(xT
i β + β0) ≥ M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

∥β∥

subject to yi(xT
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

SVM

Caltech/MIT Group Tsinghua GroupKorean Group

·• Reducing	 noise	 artifacts	 in	 Auxiliary	 channels: 
-	 maintain	 the	 “data	 quality”	 for	 DA 
-	 monitor	 the	 instrumental	 abnormality	 

·• Various	 schemes	 used	 to	 mitigate	 noise	 glitches

4



S4:	 30%	 reduction	 
S6:	 55%	 reduction Redundancy	 b.t.	 MLAs

Introduction
Biswas,	 Blackburn,	 Hodge,	 Oh,	 Oh,	 Son,	 

Vaulin,	 Kim,	 Kim,	 Lee,	 et.al.,	 	 
Phys.	 Rev.	 D	 88,	 062003,	 2013

amplitude of the glitches in the gravitational-wave channel
and their detectability using auxiliary-channel information.
This in turn implies that we either do not provide all
necessary information for the identification of these

high-significance glitches in the input feature vector or
the classifiers somehow do not take advantage of this
information. Given the close agreement between various
classifiers that we observe in the ROC curves (Fig. 4) and

FIG. 5 (color online). Comparing the distribution of glitches
before and after applying classifiers at 1% probability of false
alarm. This cumulative histogram shows the number of glitches
that remain with at least as high a significance in the
gravitational-wave channel. We see that all our classifiers re-
move similar fractions of glitches at 1% probability of false
alarm. This corresponds to their similar performances in Fig. 4,
with efficiencies near 30% and 55% for S4 and S6 data, respec-
tively. We also see that the classifiers tend to truncate the high-
significance tails of the non-Gaussian transient distributions,
particularly in S6. For reference, in Gaussian noise the odds of
observing in a week of data a transient above the nominal
significance threshold used here (! ! 35) are extremely small
("10#6). Thus virtually all of the transients on the plot are non-
Gaussian artifacts. Panel (a) shows the distributions of glitches in
S4 data. Panel (b) shows the distributions of glitches in S6 data.

FIG. 6 (color online). Redundancy between MLA classifiers.
These histograms show the fractions of detected glitches identified
in common by a given set of classifiers at 1% probability of false
alarm (blue). The abscissa is labeled with bit-words, which are
indicators of which classifier(s) found that subset of glitches (e.g.
011 corresponds to glitches that were not found by ANN, but were
found by RF and SVM). The quoted percentages represent the
fractions of detected glitches so that 100% represents those glitches
whichwere successfully identifiedbyat least oneof the classifiers at
1% false-alarm probability. The three classifiers show a large
overlap for glitch identification (bit-word ¼ 111), meaning the
classifiers are largely able to identify the same glitch events. Also
shown is the fraction of clean samples (green) misidentified as
glitches, which shows a comparatively flat distribution across
classifier combinations. Panel (a) shows the bit-word histograms
for S4 data. Panel (b) shows the bit-word histograms for S6 data.

APPLICATION OF MACHINE LEARNING ALGORITHMS TO ... PHYSICAL REVIEW D 88, 062003 (2013)

062003-15
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Introduction Input Feature Selection and Algorithms for ANNs

Principal Component Analysis (PCA)

Partial Least-Squares (PLS) (World, 1966)

Independent Component Alaysis (ICA)

Non-linear PCA (NLPCA)

Learning Vector Quantization (LVQ)

Self-Organizing Map (SOM) (Bowden et al, 2002)

Forward Selection (Constructive ANNs)

Backward Elimination

Nested Subset (e.g. Increasing Delay Order)

Exhaustive Search

Heuristic Search (e.g. GA-ANN)

Single-Variable Ranking (SVR)

GRNN Input Determination Algorithm (GRIDA)

Direct Optimization (e.g. Lasso)

Evolutionary ANNs

Rank (Maximum) Pearson Correlation

Ranked (Maximum) Spearman Correlation

Forward Partial Correlation Selection

Time-series analysis (Box & Jenkins, 1976)

Entropy (minimum) Ranking

Minimum Entropy

Rank (maximum) MI

MI Feature Selection (MIFS) (Battiti, 1994)

MI w/ ICA (ICAIVS) (Back & Trappenberg, 2001)

Partial Mutual Information (PMI) (Sharma, 2000)

Joint MI (JMI) (Bonnlander & Weigend, 1994)
Stepwise Regression

Pruning (e.g. OBD (Le Cun et al., 1990))

Nested

Global Search

Ranking

Wrapper

Weight-basedOptimization

Embedded

Information Theoretic (nonlinear)

Correlation (linear)

Entropy

Mutual Information (MI)

Non-linear Method

Linear Method

Dimensional Reduction

Rotation

Clustering

Feature Selection

Model-based Filter (Model-Free)

Robert May, Graeme Dandy and Holger Maier, 
"Review of Input Variable Selection Methods for 
Artificial Neural Networks", Artificial Neural 
Networks - Methodological Advances and 
Biomedical Applications, Edited by Kenji 
Suzuki, ISBN 978-953-307-243-2, 362 pages, 
Publisher: InTech, Chapters published.
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Introduction

·•Project	 Goal: 
-	 Reducing	 number	 of	 input	 features	 by	 selecting	 mostly	 
contributed	 features	 :	 computational	 speed-up 
-	 Removing	 redundant	 and/or	 harmful	 features	 to	 the	 
classification	 performance	 by	 feature	 selection

·•Methods: 
-	 Normalized	 Mutual	 Information	 Feature	 Selection	 (Nonlinear)	 

·•Data: 
-	 ALL_S6_959126400_hveto_channels_signif_dt	 (101,819	 samples/	 35	 
channels	 /	 2	 attributes)



Information	 Theoretic	 Method	 (MiGANN)
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• Mutual	 Information	 Coefficient:	 (Information	 Theory) 
- mutual information of two discrete random variables:  
 
 
 
where p(x,y) is the joint probability distribution function of X and Y, and p(x) and p(y) are the 
marginal probability distribution functions of X and Y.  
- Intuitively, it measures the information that X and Y share: how much knowing one of these 
variables reduces uncertainty about the other.  
- If both are independent variables, I(X;Y) = 0, no mutual information to share.

I(X;Y ) =
X

y2Y

X

x2X

p(x, y)log

✓
p(x, y)

p(x)p(y)

◆

·• Algorithm:	 NMIFS

Ref.) Pablo A. Estevez, Michel Tesmer, Claudio A. Perez, and Jacek M. Zurada, "Normalized Mutual Information Feature 
Selection", IEEE Transactions on Neural Networks, Vol. 20, No2. 189 (2009)

1. Initialization: Set                        , (initially N-features) and   
2. Compute MI w.r.t Classes: 
3. Select the first feature: 
4. Greedy selection: 

• Compute the MI between features: 

• Select the next features: Select features         that maximize: 
!

!
5. Output: the set    containing the selected features: 

F = {fi/i = 1, · · · , n} S = {}
I(fi;C) for each fi 2 F.

FIND f̂i = maxi=1,··· ,N{I(fi;C)} and set F  F\{f̂i} and set S  {f̂i}.

REPEAT until |S| = k.

I(fi; fs) for all pairs of (fi, fs), with fi 2 F and fs 2 S

fi 2 F

G ⌘ I(C; fi)�
1

|S|
X

fs2S

In(fi; fs). Set F  F\{fi} and set S  {fi}.

S



k=n selected features 
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crossovermutation

Genetic Algorithm for Global Minimum Search
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Information	 Theoretic	 Method	 (MiGANN)



Optimization / Machine learning (loosely) based 
on biological evolution; natural selection of 
genes 
!
!
!
!
!

"-)3++=

data 
preparation

initialization

ANN Training

finding best 
ROC curve

defining 
parameter sets

build initial 
population

GA
operations

ANN 
Evaluation

ANN
compute ASF, 

ISF
Visualization

Genetic Algorithm

Artificial Neural 
Network

UI
Pre/Post Processing

schematic design of GA_ANN combined pipeline

Initialize the population

Reproduction 
!
!
!
!
!
!
!
!
!
!
!
!

choose parents

Replace the worst 
members with the children

choose operator and apply 
to the parents

evaluate the children and 
accumulate them into a 

generation

	 GA’s	 incorporation	 with	 
ANN	 

1. Feature	 selection	 

2. Topology	 selection	 

3. Weight	 selection	 

4. To	 learn	 neural	 network	 
learning	 algorithm

Search global optimum
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Information	 Theoretic	 Method	 (MiGANN)
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ANN

L1_OMC-QPD1_P_OUT_DAQ_32_2048=667289.817642	

L1_OMC-QPD2_Y_OUT_DAQ_32_2048=660339.342513	

L1_OMC-QPD2_P_OUT_DAQ_32_2048=648880.835468	

L1_OMC-PZT_LSC_OUT_DAQ_8_1024=611644.083158	

L1_OMC-QPD3_P_OUT_DAQ_8_1024=560136.453594	

L1_OMC-QPD1_SUM_OUT_DAQ_32_2048=464637.187728	

L1_OMC-QPD2_SUM_OUT_DAQ_32_2048=340147.925119	

L1_ISI-OMC_CONT_RZ_IN1_DAQ_8_1024=321934.370699	

L1_LSC-REFL_Q_32_2048=281685.246617	

L1_OMC-QPD4_P_OUT_DAQ_8_1024=247231.541518	

L1_OMC-QPD4_Y_OUT_DAQ_8_1024=238743.180353	

L1_OMC-PZT_VMON_AC_OUT_DAQ_32_2048=213446.834119	

L1_OMC-QPD3_Y_OUT_DAQ_8_1024=210633.289612	

L1_ISI-OMC_GEOPF_H1_IN1_DAQ_8_1024=201769.172767	

L1_ASC-WFS4_IP_8_256=186508.980033	

L1_ASC-WFS3_IP_8_256=174079.131805	

L1_ASC-RM_P_8_256=147316.587591	

L1_LSC-POB_I_1024_4096=141248.58001	

L1_LSC-PRC_CTRL_32_2048=140997.938081	

L1_LSC-POB_I_32_2048=132375.465581	

L0_PEM-HAM1_ACCZ_8_1024=130893.99712	

L1_ASC-ETMX_P_8_256=127461.52814	

L1_ASC-ETMY_P_8_256=114186.921959	

L1_ISI-OMC_GEOPF_H2_IN1_DAQ_8_1024=108914.685549	

L1_ASC-ITMY_P_8_256=108810.943927	

L0_PEM-EY_SEISY_8_128=108150.738939	

L1_ISI-OMC_GEOPF_V2_IN1_DAQ_8_1024=96507.9823112	

L1_ASC-ITMX_P_8_256=91580.4862366	

L1_ASC-WFS2_QP_8_256=84060.8204434	

L1_ASC-WFS2_IP_8_256=75559.9162881	

L1_ASC-WFS1_QP_8_256=73135.1890178	

L1_OMC-DUOTONE_OUT_DAQ_1024_4096=69635.8853255	

L1_SUS-ETMY_SENSOR_SIDE_8_256=69559.2061476	

L1_ASC-QPDY_Y_8_128=63663.2104693	

L1_SEI-ETMX_Y_8_128=61582.3383791

OVL Mutual Information

Application	 to	 S6	 Aux.Chan.Data

Top OVL 35 channelsOnly 19 ANN Channels matched with OVL

27 matched with OVL! 
6 matched with ANN!

Highly Correlated Channels: Unorm 
0:L1_SEI-LVEA_STS2_X_8_256_signif	

630:L1_OMC-QPD3_P_OUT_DAQ_8_1024_signif	

635:L1_OMC-QPD4_Y_OUT_DAQ_8_1024_signif	

640:L1_OMC-QPD4_P_OUT_DAQ_8_1024_signif	

765:L1_OMC-QPD1_P_OUT_DAQ_32_2048_signif	

766:L1_OMC-QPD1_P_OUT_DAQ_32_2048_dt	

767:L1_OMC-QPD1_P_OUT_DAQ_32_2048_dur	

768:L1_OMC-QPD1_P_OUT_DAQ_32_2048_freq	

769:L1_OMC-QPD1_P_OUT_DAQ_32_2048_npts	

770:L1_OMC-QPD2_P_OUT_DAQ_32_2048_signif	

772:L1_OMC-QPD2_P_OUT_DAQ_32_2048_dur	

773:L1_OMC-QPD2_P_OUT_DAQ_32_2048_freq	

774:L1_OMC-QPD2_P_OUT_DAQ_32_2048_npts	

775:L1_OMC-QPD2_Y_OUT_DAQ_32_2048_signif	

780:L1_OMC-QPD1_SUM_OUT_DAQ_32_2048_signif	

781:L1_OMC-QPD1_SUM_OUT_DAQ_32_2048_dt	

782:L1_OMC-QPD1_SUM_OUT_DAQ_32_2048_dur	

783:L1_OMC-QPD1_SUM_OUT_DAQ_32_2048_freq	

784:L1_OMC-QPD1_SUM_OUT_DAQ_32_2048_npts	

785:L1_OMC-QPD2_SUM_OUT_DAQ_32_2048_signif	

786:L1_OMC-QPD2_SUM_OUT_DAQ_32_2048_dt	

787:L1_OMC-QPD2_SUM_OUT_DAQ_32_2048_dur	

788:L1_OMC-QPD2_SUM_OUT_DAQ_32_2048_freq	

789:L1_OMC-QPD2_SUM_OUT_DAQ_32_2048_npts	

810:L1_LSC-REFL_Q_32_2048_signif	

830:L1_LSC-PRC_CTRL_32_2048_signif	

940:L1_ASC-WFS3_IP_8_256_signif	

950:L1_ASC-WFS4_IP_8_256_signif	

975:L1_ASC-ETMX_P_8_256_signif	

985:L1_ASC-ETMY_P_8_256_signif	

995:L1_ASC-ITMX_P_8_256_signif	

997:L1_ASC-ITMX_P_8_256_dur	

1005:L1_ASC-ITMY_P_8_256_signif	

1007:L1_ASC-ITMY_P_8_256_dur	

1015:L1_ASC-RM_P_8_256_signif

L1_LSC-POB_Q_1024_4096	

L1_OMC-PZT_LSC_OUT_DAQ_8_1024	

L1_ISI-OMC_GEOPF_H2_IN1_DAQ_8_1024	

L0_PEM-LVEA_SEISZ_8_128	

L1_ISI-OMC_GEOPF_H1_IN1_DAQ_8_1024	

L1_ASC-ITMY_P_8_256	

L0_PEM-LVEA_BAYMIC_8_1024	

L1_ASC-BS_P_8_256	

L1_LSC-POB_Q_32_2048	

L1_ASC-ITMX_P_8_256	

L1_ASC-WFS1_QY_8_256	

L1_SUS-ETMX_SENSOR_SIDE_8_256	

L1_SUS-ETMY_SENSOR_SIDE_8_256	

L0_PEM-EX_SEISX_8_128	

L1_ASC-ITMY_Y_8_256	

L1_OMC-QPD1_P_OUT_DAQ_32_2048	

L1_ASC-WFS2_IP_8_256	

L1_ASC-ETMX_Y_8_256	

L1_OMC-PZT_VMON_AC_OUT_DAQ_32_2048	

L1_OMC-QPD1_SUM_OUT_DAQ_32_2048	

L1_ASC-WFS2_QY_8_256	

L1_SUS-RM_SUSPIT_IN_8_32	

L1_OMC-QPD2_Y_OUT_DAQ_32_2048	

L1_OMC-QPD2_SUM_OUT_DAQ_32_2048	

L1_OMC-QPD2_P_OUT_DAQ_32_2048	

L1_ASC-ITMX_Y_8_256	

L1_ASC-WFS2_IY_8_256	

L1_OMC-QPD3_Y_OUT_DAQ_8_1024	

L1_LSC-PRC_CTRL_32_2048	

L1_OMC-QPD3_P_OUT_DAQ_8_1024	

L0_PEM-HAM1_ACCZ_8_1024	

L1_ASC-WFS1_QP_8_256	

L0_PEM-EY_MAGX_1_1024	

L1_OMC-QPD4_P_OUT_DAQ_8_1024	

L0_PEM-LVEA_MAGY_1_1024
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·•70	 features	 reduced	 to	 35	 features	 via	 NMIFS	 algorithm	 
·•100	 ensemble	 runs	 and	 plot	 a	 combined	 ROC	 with	 averaged	 rank	 of	 20	 random	 sampled	 ranks	 
·•independent	 100	 runs	 -	 make	 100	 combined	 ROC	 plots

·•n35n35n1	 
·•Running	 time	 ~	 41	 hours	 
·•40~43%	 @	 0.1%	 FAP	 
·•58~59%	 @1.0%	 FAP

·•n35n15n1	 
·•Running	 time	 ~	 20	 hours	 
·•40~43%	 @	 0.1%	 FAP	 
·•58~59%	 @1.0%	 FAP

·•y=1.001,	 m=4000 ·•y=1.331,	 m=6000

·•y=1.001,	 m=6000 ·•y=1.221,	 m=6000

Application	 to	 S6	 Aux.Chan.Data

Computing Resource: ANNE Cluster @ NIMS  
- 6 cores Single node cluster  
- 24 GB Memory
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·•70	 features	 reduced	 to	 more	 simpler	 features	 via	 NMIFS	 algorithm	 
·•100	 ensemble	 runs	 and	 plot	 a	 combined	 ROC	 with	 averaged	 rank	 of	 20	 random	 sampled	 ranks	 
·•independent	 100	 runs	 -	 make	 100	 combined	 ROC	 plots

·•n35n10n1,	 y=1.001,	 m=2000	 
·•Running	 time	 ~	 18	 hours

·•n6n6n1,	 y=1.001,	 m=2000	 
·•Running	 time	 ~	 1	 hours

·•n5n5n1,	 y=1.001,	 m=2000	 
·•Running	 time	 ~	 1	 hours

·•n7n7n1,	 y=1.001,	 m=2000	 
·•Running	 time	 ~	 1.5	 hours

70	 →	 35	 /	 7	 both	 show	 
comparable	 performance	 at	 our	 
decision	 FAP	 ~	 0.1%	 (shaded	 
yellow	 region)	 

However,	 computationally	 7-
reduced	 feature	 case	 has	 huge	 
advantages	 ~	 10	 times	 faster.	 

This	 selection	 rule	 is	 very	 
crucial	 for	 selecting	 features	 
among	 1250	 full	 features	 in	 
AuxChannel	 data.

Q1) How can we find the 
optimal number of reduced 
features?	

Q2) What if 1250 full feature 
input?	


- 10% or 7 or so? varying in 
cases?	


- More studies needed

Application	 to	 S6	 Aux.Chan.Data

Comparab
le Performance!
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Application	 to	 Multichannel	 Correlation	 in	 KAGRA

“Mutual	 Information	 
Coefficient”Analysis

measuring correlation between two 
different channels

ch.A ch.B ch.C ch.N

ch.A

ch.B

ch.C

ch.N

mic1>thrshd

mic3>thrshd

ch.D

·•Monitoring	 the	 correlations	 between	 channels	 
·•Fixing	 instrumental	 via	 channel	 monitoring	 
·•Finding	 more	 glitches	 that	 are	 harmful	 for	 data	 quality	 
·•More	 studies	 needed	 in	 this	 direction

mic2<thrshd mic2<thrshd

mic2<thrshd

mic2<thrshd mic2<thrshd



15

Future	 Plan

·•Find	 a	 systematic	 way	 of	 minimum	 number	 of	 features,	 
giving	 comparable	 performance	 and	 maximal	 computing	 
speed-up.	 
·•Full	 data	 analysis	 with	 1,250	 features	 around	 104	 samples	 for	 one	 

week	 data	 

·•Selected	 Channel	 Analysis:	 Comparing	 OVL	 and	 ANNs	 

·•KAGRA	 nonlinear	 correlation	 analysis	 btw	 aux.	 channels.	 
using	 “Mutual	 Information	 Coefficient	 (MIC)”



16


