Improved Machine Learning Algorithm using Information Theoretic Feature Selection for Classifying Noise Artifact of Gravitational-Wave Data

John J. Oh (NIMS)

on behalf of
Edwin J. Son, Sang Hoon Oh (NIMS), Kyungmin Kim, Hyunkyu Lee (Hanyang Univ.), Young-Min Kim (Pusan National Univ.), Lindy Blackburn (Caltech), Ruslan Vaulin (MIT), Kazuhiro Hayama (Osaka Univ.)
2014. 6. 21 (Sat)

The 6th Korea-Japan Workshop on KAGRA
NAOJ, Japan

Contents

- Introduction
- Information Theoretic Method (MiGANN)
- Application to S6 Aux.Channel. Data
- Application to Multi-Channel Correlation in KAGRA
- Future Plan

Introduction

Power line glitch (noise transient)

- initial LIGO ~1,000 aux channels
- advanced LIGO ~10,000 aux channles

- Reducing noise artifacts in Auxiliary channels:
- maintain the "data quality" for DA
- monitor the instrumental abnormality

Caltech/MIT Group

Tsinghua Group

Introduction

Biswas, Blackburn, Hodge, Oh, Oh, Son, Vaulin, Kim, Kim, Lee, et.al., Phys. Rev. D 88, 062003, 2013

S4: 30\% reduction
S6: 55\% reduction

(a) S4 glitches

(b) S6 glitches

Redundancy b.t. MLAs

(a) S 4 bit-word histogram for MLAs

Robert May, Graeme Dandy and Holger Maier, "Review of Input Variable Selection Methods for Artificial Neural Networks", Artificial Neural Networks - Methodological Advances and Biomedical Applications, Edited by Kenji Suzuki, ISBN 978-953-307-243-2, 362 pages, Publisher: InTech, Chapters published.

Introduction

- Project Goal:

- Reducing number of input features by selecting mostly contributed features : computational speed-up
- Removing redundant and/or harmful features to the classification performance by feature selection

- Methods:

- Normalized Mutual Information Feature Selection (Nonlinear)
- Data:
- ALL_S6_959126400_hveto_channels_signif_dt (101,819 samples/ 35 channels / 2 attributes)

Information Theoretic Method (MiGANN)

- Mutual Information Coefficient: (Information Theory)

- mutual information of two discrete random variables:

$$
I(X ; Y)=\sum_{y \in Y} \sum_{x \in X} p(x, y) \log \left(\frac{p(x, y)}{p(x) p(y)}\right)
$$

where $p(x, y)$ is the joint probability distribution function of X and Y, and $p(x)$ and $p(y)$ are the marginal probability distribution functions of X and Y.

- Intuitively, it measures the information that X and Y share: how much knowing one of these variables reduces uncertainty about the other.
- If both are independent variables, $\mathrm{I}(\mathrm{X} ; \mathrm{Y})=0$, no mutual information to share.

- Algorithm: NMIFS

Ref.) Pablo A. Estevez, Michel Tesmer, Claudio A. Perez, and Jacek M. Zurada, "Normalized Mutual Information Feature Selection", IEEE Transactions on Neural Networks, Vol. 20, No2. 189 (2009)

1. Initialization: Set $F=\left\{f_{i} / i=1, \cdots, n\right\}$, (initially N -features) and $S=\{ \}$
2. Compute MI w.r.t Classes: $I\left(f_{i} ; C\right)$ for each $f_{i} \in F$.
3. Select the first feature: FIND $\hat{f}_{i}=\max _{i=1, \cdots, N}\left\{I\left(f_{i} ; C\right)\right\}$ and set $F \leftarrow F \backslash\left\{\hat{f}_{i}\right\}$ and set $S \leftarrow\left\{\hat{f}_{i}\right\}$.
4. Greedy selection: REPEAT until $|S|=k$.

- Compute the MI between features: $I\left(f_{i} ; f_{s}\right)$ for all pairs of $\left(f_{i}, f_{s}\right)$, with $f_{i} \in F$ and $f_{s} \in S$
- Select the next features: Select features $f_{i} \in F$ that maximize:

$$
G \equiv I\left(C ; f_{i}\right)-\frac{1}{|S|} \sum_{f_{s} \in S} I_{n}\left(f_{i} ; f_{s}\right) . \quad \text { Set } F \leftarrow F \backslash\left\{f_{i}\right\} \text { and set } S \leftarrow\left\{f_{i}\right\} .
$$

5. Output: the set S containing the selected features:

Information Theoretic Method (MiGANN)

MiGANN

Mutual Information-Genetic Algorithm aided Artificial Neural Network

Ensemble ANNs
GANN ensemble Run

Information Theoretic Method (MiGANN)

- Optimization / Machine learning (loosely) based on biological evolution; natural selection of genes

Application to S6 Aux.Chan.Data

LI_OMC-QPDI_P_OUT_DAQ_32_2048=667289.817642 LI_OMC-QPD2_Y_OUT_DAQ_32_2048=660339.342513 LI_OMC-QPD2_P_-OUT_DAQ_32_2048=648880.835468 LI_OMC-PZT LSC OUT DAQ 8 1024=611644.083158 LI_OMC-QPD3_P_OUT_DAQ_8_1024=560136.453594 LI_OMC-QPDI_SUM_OUT_DAQ_32_2048=464637.187728 LI_OMC-QPD2_SUM_OUT_DAQ_32_2048=340147.925119 LI_ISI-OMC_CONT_RZ_INI_DAQ_8_1024=321934.370699 LI_LSC-REFL_Q_32_2048=281685.246617
LI_OMC-QPD4_P_OUT_DAQ_8_1024=247231.541518 LI_OMC-QPD4_Y_OUT_DAQ_8_1024=238743.180353 LI_OMC-PZT_VMON_AC_OUT_DAQ_32_2048=213446.834119 LI_OMC-QPD3_Y_OUT_DAQ_8_1024=210633.289612 LI_ISI-OMC_GEOPF_HI_INI_DAQ_8_1024=201769.172767 LI_ASC-WFS4_IP_8_256=186508.980033
LI_ASC-WFS3_IP_8_256=174079.131805 LI ASC-RM P 8 256=147316.587591 LI_LSC-POB_I_1024_4096=141248.58001 LI_LSC-PRC_CTRL_32_2048=140997.93808। LI_LSC-POB_I_32_2048=132375.46558। LO_PEM-HAMI_ACCZ_8_1024=130893.99712
LI_ASC-ETMX_P_8_256=127461.52814
LI ASC-ETMY P 8 256=114186.921959
LI_ISI-OMC_GEOPF_H2_INI_DAQ_8_1024=108914.685549 LI_ASC-ITMY_P_ 8 _ $256=108810.94392 \overline{7}$
LO_PEM-EY_SEISY_ $\overline{8}$ _128 $=108150.738939$ LI_ISI-OMC_GEOPF_V2_INI_DAQ_8_1024=96507.9823II2 LI_ASC-ITMX_P_8_256=91580.4862366 LI ASC-WFS2 QP $8 \quad 256=84060.8204434$ LI_ASC-WFS2_IP_8_256=75559.916288। LI_ASC-WFSI_QP_ $\overline{8}$ _256=73135.1890178 LI_OMC-DUOTONE_OUT_DAQ_1024_4096=69635.8853255 LI_SUS-ETMY_SENSOR_SIDE_8_256=69559.2061476
LI_ASC-QPDY_Y_8_I28=63663.2104693
LI_SEI-ETMX_Y_ 8 _128=61582.3383791

Only 19 ANN Channels matched with OVL

LI_LSC-POB_Q_1024_4096

LI_OMC-PZT̄_LSC_OUT_DAQ_8_1024 LI_ISI-OMC_GEOPF_H2_INI_DAQ_8_1024 LO_PEM-LVEA SEISZ 8 I28
LI_ISI-OMC_GEOPF_HI_INI_DAQ_8_1024
LI_ASC-ITMY_P_8_256
LO_PEM-LVEA_BAYMIC_8_1024
LI_ASC-BS_P_8_256
LI_LSC-POB_Q_32_2048
LI_ASC-ITMX_P_8_256
LI_ASC-WFSI_QY_8_256
LI_SUS-ETMX_SENSOR_SIDE_8_256 LI_SUS-ETMY_SENSOR_SIDE_8_256 LO_PEM-EX_SEISX_8_128
LI_ASC-ITMY_Y_8_256
LI_OMC-QPDI_P_OUT_DAQ_32_2048 LI_ASC-WFS2_IP_8_256
LI_ASC-ETMX_Y_8_256
LI_OMC-PZT_VMON_AC_OUT_DAQ_32_2048 LI_OMC-QPDI_SUM_OUT_DĀ̄_32_2048 LI_ASC-WFS2_QY_8_256
LI_SUS-RM_SUSPIT_IN_8_32
LI-OMC-QPD2_Y_OUT_DAQ_32 2048 LI_OMC-QPD2_SUM_OUT_DAQ_32_2048 LI_OMC-QPD2_P_OUT_DAQ_32_2048 LI_ASC-ITMX_Y _ $\overline{8} _256$
LI_ASC-WFS2_IY 8_256
LI_OMC-QPD3_Y_OUT_DAQ_8_I 1024 LI_LSC-PRC_CTRL_32_2048 LI_OMC-QPD3_P_OUT_DAQ_8_1024 LO_PEM-HAMI_ĀC̄CZ_8_1024
LI_ASC-WFSI_QP_8_256
LO_PEM-EY_MAGX_I_I024 LI_OMC-QPD4_P_OUT_DAQ_8_1024 LO_PEM-LVEA_MAGY_I_1024

Top OVL 35 channels

> Highly Correlated Channels: Unorm
> 0:LI_SEI-LVEA_STS2_X_8_256_signif
> 630:LI_OMC-QPD3_P_OUT_DAQ_8_1024_signif 635:LI_OMC-QPD4_Y_OUT_DAQ_8_1024_signif 640:LI OMC-QPD4_P_OUT_DAQ_8_1024_signif 765:LI_OMC-QPDI_P_OUT_DAQ_32_2048_signif 766:LI_OMC-QPDI_P_OUT_DAQ_32_2048_dt 767:LI_OMC-QPDI_P_OUT_DAQ_32_2048_dur 768:LI_OMC-QPDI_P_OUT_DAQ_32_2048_freq 769:LI_OMC-QPDI_P_OUT_DAQ_32_2048_npts 770:LI_OMC-QPD2_P_OUT_DAQ_32_2048_signif 772:LI_OMC-QPD2_P_OUT_DAQ_32_2048_dur 773:LI_OMC-QPD2_P_OUT_DAQ_32_2048_freq 774:LI_OMC-QPD2_P_OUT_DAQ_32_2048_npts 775:LI_OMC-QPD2_Y_OUT_DAQ_32_2048_signif 780:LI_OMC-QPDI_SUM_OUT_DAQ_32_2048_signif 781:LI_OMC-QPDI_SUM_OUT_DAQ_32_2048_dt 782:LI_OMC-QPDI_SUM_OUT_DAQ_32_2048_dur 783:LI_OMC-QPDI_SUM_OUT_DAQ_32_2048_freq 784:LI_OMC-QPDI_SUM_OUT_DAQ_32_2048_npts 785:LI_OMC-QPD2_SUM_OUT_DAQ_32_2048_signif 786:LI_OMC-QPD2_SUM_OUT_DAQ_32_2048_dt 787:LI_OMC-QPD2_SUM_OUT_DAQ_32_2048_dur 788:LI_OMC-QPD2_SUM_OUT_DAQ_32_2048_freq 789:LI_OMC-QPD2_SUM_OUT_DAQ_32_2048_npts 810:LI_LSC-REFL_Q_32_2048_signif 830:LI_LSC-PRC_CTRL_32_2048_signif 940:LI_ASC-WFS3_IP_8_256_signif 950:LI_ASC-WFS4_IP_8_256_signif 975:LI_ASC-ETMX_P_8_256_signif 985:LI_ASC-ETMY_P_8_256_signif 995:LI_ASC-ITMX_P_8_256_signif 997:LI_ASC-ITMX_P_8_256_dur 1005:LI_ASC-ITMY_P_-8_256_signif 1007:LI_ASC-ITMY_P_8_256_dur 1015:LI_ASC-RM_P_8_256_signif

Application to S6 Aux.Chan.Data

- 70 features reduced to 35 features via NMIFS algorithm
- 100 ensemble runs and plot a combined ROC with averaged rank of 20 random sampled ranks
- independent 100 runs - make 100 combined ROC plots

12

- n 35 n 35 n 1
- Running time ~ 41 hours
- 40~43\% @ 0.1\% FAP
- 58~59\% @1.0\% FAP
- n 35 n 15 n 1
- Running time ~ 20 hours
- 40~43\% @ 0.1\% FAP
- 58~59\% @ 1.0\% FAP

Computing Resource: ANNE Cluster @ NIMS - 6 cores Single node cluster

- 24 GB Memory

Application to S6 Aux.Chan.Data

- 70 features reduced to more simpler features via NMIFS algorithm
- 100 ensemble runs and plot a combined ROC with averaged rank of 20 random sampled ranks
- independent 100 runs - make 100 combined ROC plots

Application to Multichannel Correlation in KAGRA

- Monitoring the correlations between channels
- Fixing instrumental via channel monitoring
- Finding more glitches that are harmful for data quality
- More studies needed in this direction

Future Plan

- Find a systematic way of minimum number of features, giving comparable performance and maximal computing speed-up.
- Full data analysis with 1,250 features around 10^{4} samples for one week data
- Selected Channel Analysis: Comparing OVL and ANNs
- KAGRA nnonlinear correlation analysis błw aux. channels. using "Mutual Information Coefficient (MIC)"

