Status of KAGRA Detector Characterization

Kazuhiro Hayama on behalf of detector characterization group

Human Resources

- Kazuhiro Hayama
- o Asano, Itoh, Mano, Ono, Yamamoto, Yokozawa, Yuzurihara, Narikawa, Ueno, Kanda, and so on
- o John Oh, SangHong Oh, Young-Ming Kim, Edwin Son (KGWG)
- o Keiko Kokeyama (LIGO)
- Didier Verkindt (Virgo)

Interface of the detector characterization

Data Analysis

Veto info., target veto, Data quality, calibration accu.

Detector Characterization

PEM, Aux. channels, Online-monitors, diagnostics

Instruments

Two Direction: To provide system, tools for

- o Detector diagnostics, helping speed-up commissioning
- Monitor data quality, Veto analysis

Detector Characterization Cluster

Subsystem detector characterization

Speed-up commissioning

- Single Subsystem Diagnostics
 - o ADC noise is within range?
 - Whitening requirement?
 - o Channel correlated noise?
 - Find good frequency region for calibration
 - Components consisting the subsystem is working correctly?
 - Noise budget
- o Kill source of glitches, lines
- o Will provide tools to do these effectively.
- o Important to cooperate with subsystems at early phase of the development. (First, with VIS people)

Multiple-subsystem characterization

Speed-up commissioning

Example of correlated noise between subsystems

Sensitivity curve of KAGRA

- Need to watch channels over subsystems
 - Up-conversion noise: seismic glitches will excite optical bench motion which cause scattered light noise.
 -> AOS-VIS channels
- Non-linear correlation analysis between multiple subsystems, Multi variate analysis using lots of channels will be important to find/ understand/kill such noise source.

Data quality monitor, Veto Analysis

Data quality Evaluation

Category	Definition	Prescription for analyses		
CAT1	Flags obvious and severe	Science data are re-defined when		
	malfunctions of the detector.	removing CAT1 segments.		
CAT2	Flags noisy periods where the coupling	Triggers can be automatically removed		
	between the noise source and the DF	if flagged by a CAT2 veto.		
	is well-established.	Good performance.		
CAT3	Flags noisy periods where the coupling	CAT3 flags should not be applied		
	between the noise source and the DF	automatically. Triggers flagged by a CAT3		
	is not well-established.	veto should be followed up carefully.		
		LVC		

Post processing: Veto Analysis for doing Science

	Veto list generation	
Transient GW (CBC, Burst)	Continuous GW (pulsar, LMXB,)	Stochastic GW (Early Univ,)
 Real-time glitch detection Glitch classification Coincidence analysis between the GW channel and auxiliary sensor channels. 	 Line tracking Line detection Removal of high frequency spikes 	Noise floor monitor Non-stationary

DetChar Tools

- Software developed on GitHub, free, no maintenance is needed. We can concentrate into development.
- o Progress is reported in detchar blog

http://gwclio.icrr.u-tokyo.ac.jp/lcgtsubgroup/detectorcharacterization/

Weekly Activities

o Circle shows volume of commits

Structure of HasKAL

■ DetectorUtils	fix bug in Detector module
ExternalUtils	change module name
FrameUtils	change Type of the sampling frequency, Double. change the local funct
GUI_Utils	add FitMethod type for SRMon
Misc	add module of flip for 3 parameters
MonitorUtils	modify bug of StochMon
PlotUtils	add plotSaveAsPicture function in module
SignalProcessingUtils	reduced input number of filter functions
SimulationUtils	move DetectorNoiseGenerator.hs
SpectrumUtils	move DetectorNoiseGenerator.hs
StatisticsUtils	rename files
TimeUtils	make gps2timetuple by yokozawa

 $\underline{https://github.com/gw-analysis/detector-characterization/tree/master/HasKAL/src/HasKAL}$

Primary Projects

DetChar projects

- To maintain Diagnostics Test Tool
- Detchar GUI
- Glitch Monitor
- Detchar web page
- Line Monitor
- correlation finder
- Noise Modeling
- Rayleigh Monitor
- Noise Floor Monitoring
- Range Monitor
 (Inspiral, Ringdown,
 Insp-Merger-Ringdown,
 Stochastic)
- Noise Budget
- **Health Monitor**
- Data base
- **Ouality flag**

- **Special Projects**
 - Globally correlated mag noise
 - Violin mode
 - Multi-Channel Analysis (with Korea detchar, Mano)
 - **Detchar shift plan**
 - **Newtonian Noise**
 - in progress
 - in slowly progress

Noise Characterization at the KAGRA site

DetChar GUI

Running Glitch Monitor (kleineWelle)

ROOT based plotting

Yuzurihara

Dynamical Plotting Tools

Range Monitor

Characterizing telescope sensitivities

Inspiral

Ringdown

IMBH (Inspiral+Merger+Ringdown)

Stochastic

Ono, Hayama, Yokozawa

Rayleigh Monitor

Investigating noise behavior at various frequency regions

Correlation Analysis

o Finding both linear and nonlinear correlations between channels and infer such as up-conversion noise which are not found/understood.

0

	ch1	ch2	ch3	ch4	ch5	ch6
ch1	1.00	-0.41	-0.51	0.75	0.80	-0.75
ch2	-0.41	1.00	0.05	-0.46	-0.57	0.42
ch3	-0.51	0.05	1.00	-0.33	-0.35	0.34
ch4	0.75	-0.46	-0.33	1.00	0.82	-0.98
ch5	0.80	-0.57	-0.36	0.82	1.00	-0.82
ch6	-0.75	0.43	0.34	-0.98	-0.82	1.00

Yuzurihara

Development of New Noise Characterization Tools

- Realtime non-Gaussian noise modeling
 - o In reality, even stationary noise is different from Gaussian noise.
- Globally detector network monitor

Multi-Channel Analysis

- Lead by Korean GW group
- o Initial Goal:

- O Development of a method for localize noise sources using auxiliary channels and PEMs to support find/kill noise sources.
- o KGWG has been developing ANN based one for post-processing analysis in LVC.
- We focuses on a tool useful for commissioning.
- Account to access KISTI cluster

Integrating iDQ into HasKAL

- a low-latency pipeline which makes event-by-event predictions about the glitchiness of GW data based on auxiliary channel informations and provides data quality information.
- o Finding responsible channels of glitches

10-1

Will integrate iDQ into HasKAL.

Recie Improvement of efficiency by Finding glitch-introduced removing artificial glitches channels mvsc 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 L1 PSL-PMC MIXER OUT DQ 8 Efficiency L1 PSL-PMC MIXER OUT DQ 3 L1 PSL-PMC HV MON OUT DO L1_PSL-FSS_TPD_DC_OUT_DQ 0.59 0.81 0.66 L1_PSL-FSS_TPD_DC_OUT_DQ

Young-Min Kim (Pusan Nat'l Univ.)

Japan-Korea KAGRA DetChar Call @ April 22, 2014

10-6

10-5

False Alarm Probability

Data quality study (cryogenic glitches)

Daisuke Tatsumi (NAOJ)

Reduction of cryogenic induced glitches KAGRA is a unique cryogenic detector in the world. We have to a method to quality the data condition.

- A noise monitoring system for the cryogenic system is developed at TAMA 300.
- Our goal is to develop a system to reduce the false alarm rate to 1/month.

Schedule

- 2014 June: Installation of detchar GUI on VIS digital system at NAOJ so that we get advice, feedback from VIS people
- ☐ 2014 Oct ~: GIF will start operate some of environmental monitors. These monitor data will be retrieve by same digital system as KAGRA. We will do test-operation of the detchar system/tools using the monitor data.
- ☐ 2014Oct-2015Dec Updating/Developing system and tools.

DetChar:

Comment at External Review

1) A way to maximize the utility of DetChar in speeding the commissioning progress in the early days is for the commissioning team to construct well-defined start-up projects for the DetChar team. An example of one created for LIGO is here:

https://nodus.ligo.caltech.edu:30889/wiki/doku.php? id=detector_commissioning_characterization_projects

- 2) It would be helpful to have remote interferometer experts able to do remote monitoring and data analysis during the commissioning phase. Will there be remote data mirrors, data access, workstations?

 Rana
- We developed/developing the detchar tools. Some of them are equivalent to LIGO tools and some of them are brand new.
- That does not satisfy us.
- To make them useful for speed-up commissioning, we need feedback / advice from subsystems. Now Akutsu-kun helps/gives us information about VIS->AOS up-conversion noise and we discuss how to find/characterize that noise and give him information to kill them. We would like to contact others and request helps.

TODO

- o Web-based detchar
- o Data-base

