Line characterization

21 Oct. 2014
K. Ueno (Osaka Univ.)

Basic Algorithm

1) FFT the given time series $x(n)$ and find the frequency which gives the largest amplitude.
2) You somehow minimize the following cost function about A, f, and ϕ,

$$
F(A, f, \varphi)=\frac{1}{N} \sum_{n=0}^{N-1}\left\{x(n)-A \cos \left(2 \pi \frac{f}{f_{s}} n+\varphi\right)\right\}^{2}
$$

starting from A and f estimated at 1). This is just a least square fit with a sinusoidal function.
3) Once the best-fit values of A, f, and ϕ are found, the waveform of converged spectrum is subtracted from $\times(\mathrm{n})$.
4) Repeat the procedure $1 \sim 3$ as many times as one would like.

Difference from NHA's paper

NHA paper

Iterative Least Square

(ILS)

At one time with

 3D Newton's method
Computational cost

$$
\begin{aligned}
& T_{\text {data }} \cong T_{\text {frame }} \times \frac{N_{\text {data }}}{N_{\text {shift }}} \\
& \qquad T_{\text {frame }} \cong 0.35 \mathrm{sec} \times \frac{N_{\text {frame }}}{128} \times \frac{N_{\text {spec }}}{10} \times \frac{N_{\text {iter }}}{1000} \\
& \text { 新学術マシン) }^{\mathrm{T}_{\text {data }}}: \begin{array}{l}
\text { : time to process given data } \\
\mathrm{T}_{\text {frame }} \\
\mathrm{N}_{\text {data }} \text { : time to process one frame } \\
\mathrm{N}_{\text {frame }}: \text { data length } \\
\mathrm{N}_{\text {shift }}: \text { shift length (frame interval) } \\
\mathrm{N}_{\text {spec }} \text { : the number of spectra to be extracted } \\
\mathrm{N}_{\text {iter }}: \text { the number of iteration to identify each signal }
\end{array}
\end{aligned}
$$

Computational cost（cont’d）

$$
\begin{aligned}
T_{\text {data }} \cong & T_{\text {frame }} \times \frac{N_{\text {data }}}{N_{\text {shift }}} \\
& T_{\text {frame }} \cong 0.35 \mathrm{sec} \times \frac{N_{\text {frame }}}{\substack{\text { (新学術マシン) }}} 128
\end{aligned} \frac{N_{\text {spec }}}{10} \times \frac{N_{\text {iter }}}{1000}
$$

Example

For 128 s data＠fs＝2048 Hz，$N_{\text {data }}=2048 \times 128=262144$

So if you set $N_{\text {shift }}=1$ ，then $T_{\text {data }}=25.5 \mathrm{hrs}$ ～ 1 hour for 32CPU

However,...

- When you focus only on some lines, e.g., those around 400 Hz , you can
$-\mathrm{f}_{\mathrm{s}}=2048 \mathrm{~Hz} \rightarrow 1024 \mathrm{~Hz}$
$-\mathrm{N}_{\text {shift }}=1 \rightarrow\left(\mathrm{~N}_{\text {frame }} / 8=\right) 16$ or $\left(\mathrm{N}_{\text {frame }} / 4=\right) 32$
- Then, the cost becomes smaller at least by $1 / 32$, i.e., $T_{\text {data }} \sim 2 \mathrm{~min}$ for 32 CPU
- So even realtime analysis might be possible!
(though it is necessary to apply a bandpass filter beforehand)

Backups

fs=1024Hz; frame=256; shift=16; \#spectrum=20

Time variation of amplitudes

Amplitude distribution

Amplitude distribution (logy)

