Review of "BayesLine: Bayesian Inference for Spectral Estimation of Gravitational Wave Detector Noise" by Littenberg & Cornish, arXiv:1410.3852

Shuhei Mano

ISM

Detchar telecon

November 11, 2014

Abstract

Gaussian-noise modeling for power spectrum

- For detection confidence, signal characterization, model selection, parameter estimation
- Cubic splines (smoothly varying broad-band noise) + Cauchy (Lorentz) distribution (narrow-band line)
- Demonstrated on LIGO S5,S6 data

Introduction

LIGO/Virgo noise power spectrum

- Broad band: seismic (below 10 Hz), thermal from mirror suspensions and coating (10-200 Hz), photon shot noise (higher freq.)
- Narrow band: mirror suspensions, AC electrical supply, sinusoidal motion imparted on the mirrors calibration

For stationary and Gaussian noise, likelihood in matched filtering:

$$\log p(d|\theta) = -\int_0^\infty \frac{|\tilde{r}(f;\theta)|^2}{S_n(f)} df + const,$$

where the residual $\tilde{r}(f; \theta) = \tilde{d}(f) - \tilde{h}(f; \theta)$.

 For non-stationary, non-Gaussian noise, BayesWave (to be introduced by Hayama-san)

Introduction (cont.)

Why challenging?

- Past searches used a running average of the instrument power spectrum over long duration.
- But not stationary for times much longer than a few tens of second, depriving us of a sufficiently accurate reference noise spectrum.
- Sensitivity of detectors improves, particularly at low frequency.
 1.4M_{sol} neutron star binary merger takes ~ 25 sec to evolve from 40 Hz. Advanced LIGO/Virgo reach down to ~ 10 Hz. The binary is in band ~ 10³ sec, but reliance on averaging for PSD (power spectral density) estimation demands ~ 10⁴ sec.

We want a parametrized model for the instrumental noise, just as we do for the signal, and the two will be deduced simultaneously during the parameter estimation.

The LIGO/Virgo Power Spectrum

Red: used during actual parameter estimation follow-up analysis of a candidate chirp signal.

Non-stationarity of Noise

1024 sec of data which is the nominal duration used for PSD estimation in the follow-up of S6 triggers. Divide the data into 32(16,64) sec segments, the amount of data needed to parameter estimation of binary neutron star signal in S6.

Non-stationarity of Noise (cont)

60 Hz power line with 8 sec segments. Assuming the noise as being stationary over such long duration is not reliable.

The BAYESLINE method

MCMC (Markov chain Monte Carlo) is used to get posterior of PSD.

the broad-band noise S_S(f; ξ, N_S), where N_S is the number of control points in cubic spline (ξ_i = (S_i, f_i)):

$$S_{S,i}(f;\xi) = \sum_{k=1}^{3} c_k^{(i)} (f-f_i)^k, \quad f \in [f_i, f_{i+1}], \quad i = 0, 1, ..., N_S.$$

the narrow-band noise: S_L(f; λ; N_L), where N_L is the number of Cauchy distributions (λ_j = (A_j, Q_j, f_j)):

$$S_{L,j}(f;\lambda_j) = \frac{z(f)A_jf_j^4}{(f_jf)^2 + Q^2(f_j^2 - f^2)}, \qquad j = 1, ..., N_L$$

where z(f) is introduced for truncation at $f_j \pm f_j/50$.

Priors are Uniform (not described on A_j and Q_j).

The BAYESLINE method (cont.)

Likelihood is as "matched filtering" with

$$S_n(f;\xi,N_S,\lambda,N_L) = S_S(f;\xi,N_S) + S_L(f;\lambda,N_L)$$

$$\log p(d|\xi, N_S, \lambda, N_L) = -\frac{2}{T} \sum_{f=1}^{N} \frac{|\tilde{d}(f)|^2}{S_n(f;\xi, N_S, \lambda, N_L)} + const.$$

▶ Because chain runs among models with different number of parameters, RJMCMC (reversible jump MCMC) is employed. Trans-model (different number of parameters) acceptance probability of $M_i \rightarrow M_j$ is

$$\min\left\{1,\frac{\pi_j(\theta_j)}{\pi_i(\theta_i)}\frac{\pi_{ji}q_{ji}(\mathbf{v}_{ji})}{\pi_{ij}q_{ij}(\mathbf{u}_{ij})}\left|\frac{\partial T_{ij}(\theta_i,\mathbf{u}_{ij})}{\partial(\theta_j,\mathbf{u}_{ij})}\right|\right\},\qquad(\theta_j,\mathbf{v}_{ji})=T_{ij}(\theta_i,\mathbf{u}_{ij}),$$

where u_{ij} and v_{ji} are additional parameters and $\pi_i(\theta_i)$ is the target distribution (posterior).

• Marginalize over (ξ, N_S, λ, N_L) gives posterior PSD.

RJMCMC Green (1995) Biometrika 82: 711-732

Example (Green 1995)

Model 1: θ , model 2: (θ_1, θ_2) . $\pi_{12} = \pi_{21} = 1$. Model 2 to 1, $\theta = (\theta_1 + \theta_2)/2$. Let $(\theta_1, \theta_2) = T_{12}(\theta, u) = (\theta - u, \theta + u)$ with $u \sim q_{12}$. The acceptance probability is

$$\min\left\{1,\frac{\pi_2(\theta_1,\theta_2)}{\pi_1(\theta)}\frac{1}{q_{12}(u)}2\right\}.$$

- For a bijection, "dimension matching", we need additional parameters.
- Reversibility (detailed balance):

$$\int_{A}\int_{B}K(x,dy)\pi(dx)=\int_{B}\int_{A}K(y,dx)\pi(dy)$$

demands the acceptance probability.

Demonstration by LIGO S6

Requires 1 hour for 1024 sec, which is insignificant when compared to the computation cost of compact binary parameter estimation.

Demonstration by LIGO S6 (cont.)

Off-source PSD leaves behind significant large tails, i.e. incurs bias by the signal model in an attempt to account for the non-Gaussian residual.

Demonstration by LIGO S6 (cont.)

Simulated binary neutron star signals and use LALInference to estimate chirp mass. The posterior distribution.

In principle there is a risk that PSD model fit-out part of the signal. But in practice it is not, because the template provides a much better model for the signal than BayesLine.