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Abstract

Gaussian-noise modeling for power spectrum
» For detection confidence, signal characterization, model selection,
parameter estimation

» Cubic splines (smoothly varying broad-band noise) + Cauchy
(Lorentz) distribution (narrow-band line)

» Demonstrated on LIGO S5,S6 data



Introduction
LIGO/Virgo noise power spectrum

» Broad band: seismic (below 10 Hz), thermal from mirror
suspensions and coating (10-200 Hz), photon shot noise (higher
freq.)

» Narrow band: mirror suspensions, AC electrical supply, sinusoidal
motion imparted on the mirrors calibration

For stationary and Gaussian noise, likelihood in matched filtering:

w |F(f; 0)[2
Sn(f)

where the residual F(f; §) = d(f) — h(f; 6).

log p(d|f) = —j(; df + const,

» For non-stationary, non-Gaussian noise, BayesWave (to be
introduced by Hayama-san)



Introduction (cont.)

Why challenging?

» Past searches used a running average of the instrument power
spectrum over long duration.

» But not stationary for times much longer than a few tens of second,
depriving us of a sufficiently accurate reference noise spectrum.

» Sensitivity of detectors improves, particularly at low frequency.
1.4Ms,, neutron star binary merger takes ~ 25 sec to evolve from 40
Hz. Advanced LIGO/Virgo reach down to ~ 10 Hz. The binary is in
band ~ 10° sec, but reliance on averaging for PSD (power spectral
density) estimation demands ~ 10* sec.

We want a parametrized model for the instrumental noise, just as we do
for the signal, and the two will be deduced simultaneously during the

parameter estimation.



The LIGO/Virgo Power Spectrum
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Red: used during actual parameter estimation follow-up analysis of a candidate
chirp signal.



Non-stationarity of Noise
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1024 sec of data which is the nominal duration used for PSD estimation in the
follow-up of S6 triggers. Divide the data into 32(16,64) sec segments, the amount
of data needed to parameter estimation of binary neutron star signal in S6.



Non-stationarity of Noise (cont)

0.03 T T T T T T ‘ T T T | T ] 1.00
i Frequency — |4
0.02 |- Amplitude - ] 0.98
L ] Nﬁ
C Joes =
~ 0.01 - ] N
2 1
= o4
% 000 "o
£ -
o foe2 T
b= -0.01 ] X
r = 0.90 £
i ] =
-0.02 C 1 oss
-0.03 T N S R T P IR TR L1 0.86
0 200 400 600 800 1000

60 Hz power line with 8 sec segments. Assuming the noise as being stationary
over such long duration is not reliable.



The BAYESLINE method

MCMC (Markov chain Monte Carlo) is used to get posterior of PSD.

> the broad-band noise Ss(f; &, Ns), where Ng is the number of
control points in cubic spline (¢; = (Si, f;)):

3
Ssi(:€) = > e\ (F=f)*,  fe[fufixl, i=0,1,..,Ns.
k=1

» the narrow-band noise: Sy (f; 4; N.), where N is the number of
Cauchy distributions (1; = (A;, Qj, f;)):

2(NAf!
Si(f; ) =

,  j=1,.,N
(f1)2 + Q2(F2 — 2) ’

where z(f) is introduced for truncation at f; + f;/50.

> Priors are Uniform (not described on A; and Q;).
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The BAYESLINE method (cont.)
» Likelihood is as “matched filtering” with
Sn(f; ga Ns, 4, NL) = SS(f; fa NS) + SL(f; A, NL):
|d(f)P?

N
2
log p(dI¢, Ns, A, NL) = —— + const.
T ; Sn(f; 'f’ NS’/l’ NL)

» Because chain runs among models with different number of
parameters, RIMCMC (reversible jump MCMC) is employed.
Trans-model (different number of parameters) acceptance
probability of M; — M; is

. { 7 (6;) 7;iqi (Vi)
min{1,
7i(6:) misqis(ui)

where uj; and vj; are additional parameters and x;(6;) is the target

oTij(0i, uy)
a(6;, uy)

}, (0j, vii) = Ti(6s, ujp),

distribution (posterior).

» Marginalize over (&, Ns, A, N) gives posterior PSD.



RJMCMC Green (1995) Biometrika 82: 711-732

Example (Green 1995)

Model 1: 8, model 2: (64,02). w12 = w21 = 1. Model 2to0 1,
0= (01 + 02)/2 Let (01,02) = T12(0, U) = (0 -u,0+ U) with u ~ G12.
The acceptance probability is

min{1M 1 2}
T om0 gi2(u) S

» For a bijection, “dimension matching”, we need additional
parameters.

» Reversibility (detailed balance):

f f K (x, dy)r(dx) = f f K(y, dx)x(dy)

demands the acceptance probability.

10/13



Demonstration by LIGO S6

Requires 1 hour for 1024 sec, which is insignificant when compared to
the computation cost of compact binary parameter estimation.
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Demonstration by LIGO S6 (cont.)
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Off-source PSD leaves behind significant large tails, i.e. incurs bias by the signal

model in an attempt to account for the non-Gaussian residual.
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Demonstration by LIGO S6 (cont.)
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p(AM|d)

Simulated binary neutron star signals and use LALInference to estimate chirp
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mass. The posterior distribution.

In principle there is a risk that PSD model fit-out part of the signal. But in
practice it is not, because the template provides a much better model for

the signal than BayesLine.
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