Characterization of the LIGO
detectors during their sixth
sclence run
arXiv : 1410.7764

2014/11/18 by T.Yokozawa
DetChar meeting



Abstract

Abstract. In 2009-2010, the Laser Interferometer Gravitational-wave Observa-
tory (LIGO) operated together with international partners Virgo and GEO600 as
a network to search for gravitational waves of astrophysical origin. The sensitiv-
ity of these detectors was limited by a combination of noise sources inherent to
the instrumental design and its environment, often localized in time or frequency,
that couple into the gravitational-wave readout. Here we review the performance
of the LIGO instruments during this epoch, the work done to characterize the de-
tectors and their data, and the effect that transient and continuous noise artefacts
have on the sensitivity of LIGO to a variety of astrophysical sources.

LIGO operation with Virgo and GEO600
sensitivity was limited by combination of noise sources
performance of the LIGO instruments during S6
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1. Introduction

LIGO S6 operation during July2009 - October2010

collaboration with GEO600 and Virgo

many short-duration noise events(glitches)
« environmental
« Mechanical

. electronic mechanism ... they are not fully understood

Improved data quality through ‘vetoes’
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Figl. LIGO optical layout



2. Configuration of the So LIGO

. diode-pumped power-amplified Nd:YAG laser at 1064nm
. SO improvement
. Initial input laser system 10W to maximum of 35W
. improved the sensitivity at high frequencies(>150Hz)
. Improved COZ2 laser thermal compensation system
. alternative GW detection system
. replacing to so called 'DC readout’

. output mode cleaner(OMC) was installed to filter out the higher order
mode content of the output beam

. seismic feed-forward to a hydraulic actuation system

« [ he detail will be described in each reference



3. Detector sensitivity during S6
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Split into four epoches A-D

. AB run alongside the VSR2(second Virgo Science Run)

. Between AB and B,C ... a long instrumental commissioning break

. (C,D continuous period and D alongside the VSR3
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(inspiral range will explain later)




3. Detector sensitivity during S6

. Detector duty factor

« the fraction of the total run time

. a science segment | typically ended by lock-loss(large noise level)

. short time Is stop due to maintenance, calibration measurement

. L1 shorter than HI, due to poor detector stability during the early part

. Stability developments in understanding the critical noise coupling and
their affect operation of the instruments(see Sec.4)
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3. Detector sensitivity during S6
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The sensitivity to GWs, strain amplitude spectral density

dominant Noise source

seismically-driven motion of the key interferometer optics(<40Hz)

Brownian motion - mechanical excitation and their suspension due to
thermal energy (50-150Hz)

variation in incident photon flux(>150Hz)

narrow-band line structure(See Sec.4.7)

Detection range (SNR>8, sky average, 2048sec of data)
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4. Data-quality problems in S6

. Ideal condition ... all excess noise can identify quickly, but difficult..
. The data quality flags and their associated time segments were used

. details a representative set of specific issues that were present

« 4.1 Seismic noise

Frequency [Hz)

Normalized ground motion

. fundamental limit to the sensitivity below 40Hz

. Observed to be strongly correlated with

glitches(100-200Hz) ) s 3
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4. Data-quality problems in S6

4.2 Seismically-driven length-sensing glitches

correlated with noise in the length control signals of two short length
degree of freedom

. the power recycling cavity length(PRCL)

. short Michelson formed by the beam-splitter and the input test
masses(MICH)

Simulated and these glitches were correlated with 70% with GW data
discovered that high microseismic noise was driving large instabillities
eliminated via commissioning of a seismic feed-forward system

. decrease the PRC optic motion by a factor of three

|dentified by both Hierarchichal Veto(HVeto) and Used Percentage
Veto(UPV) algorithms



4. Data-quality problems in S6

. 4.3 Upconversion of low-frequency noise due to the Barkhausen effect

. In the earlier phase, below 10Hz motion was associated with increases
iIn noise in the 40-200Hz

« SeIismic upconversion noise was produced by passing trucks, distant
construction activities seasonal increases in water flow over dams, high

wind, and earthquakes
. (left figure) : anti-correlation between ground motion and inspiral range

. An empirical, frequency-dependent function was developed to estimate
upconversion noise from low-frequency noise -> produce flags

. (right figure) : correlation between # of glitches and test mas actuation
current, upconversion noise affect tot unmodelled GW burst search
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4. Data-quality problems in S6

. (continued) evidence that was Barkhausen noise
. magnetic filed fluctuation produced by changing magnetic fielis
. 4.4 Beam jitter noise

one of the upgrade was the output mode cleaner

the mode transmission of this cavity Is very sensitive to angular
fluctuation of the incidnet beam

. misalignment of the beam would cause non-linear power fluctuations

. low-frequency seismic noise and vibrations of optical tables were
observed to mix with higher-frequency beam jitter

. changing with the amount of alignment offset

. additionally, several other methods were used to mitigate and control
beam jitter noise throughout the run.



4. Data-quality problems in S6

. 4.5 Mechanical glitching at the reflected port
. caused by electronics failures associated with the LHO interferometer

. servo actuator -> coupled GW data at ~37Hz -> identified with HVeto
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4. Data-quality problems in S6

. 4.0 Broadband noise bursts from poor electrical connections
. repeated, broadband glitching

. The main diagnostic clues(k > k) were coincident with quadrant photo-
dodes

. unlikely detect a glitch in the beam more sensitively than GW data
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4. Data-quality problems in S6

. 4.7 spectral lines

. Many spectral lines are fundamental to the design and operation

alternating current(AC) power line 60Hz
violin modes from core-optic suspensions ~350Hz

various calibration lines used to measure the interferometer
response functions

unintended sources, magnetic and vibrational couplings



4. Data-quality problems in S6

. 4.8 The ‘spike glitch’

. They were characterized by a distinctive shape in the time series of
the signal oon the GW output photodiode

. (example fig.11) often visible in the raw time series, SNR from 200 to
20,000 with Q pipeline

. Investigated, light did not enter the arm cavities but went almost
directly into the OMC ~0.Z2miliseconds wide

. But, there are many unknown glitch sources.
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5. The impact of data quality

The impact of non-Gaussian, non-stationary noise in the LIGO detectors on
searches for GWs is significant.

. loud glitches, high rates of lower SNR glitches, spectral lines, continued
glitching in a given frequency range.

Non-Gaussian noise in the detector outputs that can be correlated with
auxiliary signals

5.1 Data quality vetoes for transient searches

. the low-mass CBC search ‘ihope’
. the all-sky cGW algorithm(coherent)

. they need multi-detector with better data quality

Data Quality flag were highly effective, time-domain DQ flag->deadtime

performance is checked by efficiency-to-deadtime ratio(EDR)



5. The impact of data quality

. b.1.1 Category 1 vetos
. The most egregious interferometer, should not be included any analysis
. Data Monitoring Tools(DMT) automatically identify
. such as cavity resonance, error h(t) calibration..
. b.2.2 Category 2, 3
. the higher category flags were used to identify likely noise artefacts.
. Category?2 veto from auxiliary data

. generated in low-latency by the DMT, photodiode saturations, digital
overflows, high seismic, environmental noise

. Category3 veto from less well understood statistical correlation

. generated HVeto, UPV bilinear-coupling veto(BCV) algorithms



5. The impact of data quality

« Deadtime and veto effects

Absolute deadtime % (seconds) Search deadtime % (seconds)
Instrument || cWB ihope cWB ihope
H1 0.3% (53318) | 0.4% (176079) || 0.4% (77617) | 3.8% (786284)
L1 0.4% (75016) | 0.1% (20915) || 0.7% (137115) | 6.2% (1180976)

Absolute deadtime : fraction of science-quality data removed
Search deadtime : fractional reduction in analysable time after
category lvetoes and segment selection.

H1 L1 —E—- :.:)0‘ u 2— .su " Category 3 vetos
Deadtime type Cat. || c(WB | ihope || ¢c(WB | ihope ;,D 55 _5_ 6ol
2 [[0.26% [ 0.77% || 1.59% [ 1.53% || 5 o[ 2 uf
Absolute % (8) —3—7'50% | 9.26% || 8.54% | 7.03% || "8 2 af
Relative % (s) 3 || 7.73% | 9.00% || 7.06% | 6.10% | = EASENIINS 5 I
Cumulative % (s) 3 797% | 9.71% || 8.54% | 7.54% Signal-to-noise ratio (SNR) Signal-to-noise ratio (SNR)
. . (a) H1
the background is dominated by low SNR :
events. 3 % i)
& 107 g
EDR>5@SNR3 and can remove tails at g w0 £
P 1077 ’g 404
SNR~20
£ w0 - |
S A e 10
Signal-to-noise ratio (SNR) Signal-to-noise ratio (SNR)

(b) L1



5. The impact of data quality

. b.2 Data quality in searches for long-duration signals
. both continuous GWs and SGWB
. duration and stationarity of data were the key factor
. b.2.1 Searches for continuous GWs
. The PowerFlux pipeline

. the final seven month of the S6 dataset to minimize the impact of
poor detector performance from the earlier epochs

. ~20% of frequency bands has been identified as non-Gaussian

. beam jitter has had a detrimental effect around 180-200Hz



5. The impact of data quality

H.2.2 Searches for a SGWB

eliminate data, too noisy, too non-stationary apparent correlated
noise between detectors

excluding those times flagged as category 1 or category 4 veto.

stationary noise assumption, depending on frequency

. ~117 days of coincident live time are remained

correlated magnetic field noise from the Schumann resonances was
observed In correlation between magnetrometers in H1, L1, Virgo

. level of correlation noise did not effect the S5 and S6 search

20



6. Conclusion and outlook for aLIGO

. regularly affected by both non-Gaussian noise transients and long-duration
spectral features.

. some problems are identified during S©
. Increasingly stable and sensitive instruments
. See in improvement of run segments and detection range
. Data quality flag help to identify backgrounds
. Still exist high SNR events -> heed more deep study, also line noise

. One major goal of the alLIGO is to contribute to multi-messenger
astronomy -> EM neutrino, both burst and CBC search

. real-time characterization of instrumental data
. reduce the latency of EM follow-up requests
. Best estimate predict ~40 binary neutron star merger per year

. a great effort will be required in commissioning the now instruments



