The Leonard E. Parker Center for Gravitation, Cosmology & Astrophysics at the University of Wisconsin–Milwaukee



# Commissioning and Characterization of the Advanced LIGO instruments

Chris Pankow for the LIGO DetChar group

A04/05 Joint Camp



#### Purpose of Detector Characterization

- Detector Characterization is crucial to the instruments' science output — earlier science runs (S5/S6) saw impacts on searches from both *nonstationary noise* and *transient effects*:
  - Detection Confidence: Families of loud transients / non-stationary noise can mimic a GW signal and reduce our ability to distinguish them from an astrophysical source
  - Parameter Estimation: Transients obscure our ability to estimate the source parameters of a putative detection
  - *Multi-messenger Astronomy*: Rapid data quality information is necessary to alert electromagnetic observatories of *real* events while minimizing the number of *false alarms*



Tail of background events mimicking a GW signal from a generic all sky search for transient GW signals

arxiv.org 1304

#### Current Status of aLIGO

## arxiv.org 1304.0670



- **Speculative**: Instrument acceptance expected to come late this year or early next year with a ramp up to the blue sensitivity region (right) later in 2015
- Short commissioning breaks thereafter towards increasing sensitivity (green, red)



| Estimated |             |            | $E_{ m GW} = 10^{-2} M_{\odot} c^2$ |         |                 |          | Number     | % BNS Localized     |                      |   |
|-----------|-------------|------------|-------------------------------------|---------|-----------------|----------|------------|---------------------|----------------------|---|
|           |             | Run        | Burst Range (Mpc)                   |         | BNS Range (Mpc) |          | of BNS     | within              |                      |   |
| Epoch     |             | Duration   | LIGO                                | Virgo   | LIGO            | Virgo    | Detections | $5  \mathrm{deg}^2$ | $20  \mathrm{deg}^2$ |   |
|           | 2015        | 3 months   | 40 - 60                             | -       | 40 - 80         |          | 0.0004 - 3 | -                   | _                    |   |
|           | 2016 - 17   | 6 months   | 60 - 75                             | 20 - 40 | 80 - 120        | 20 - 60  | 0.006 - 20 | 2                   | 5 - 12               | 8 |
|           | 2017-18     | 9 months   | 75 - 90                             | 40 - 50 | 120 - 170       | 60 - 85  | 0.04 - 100 | 1 - 2               | 10 - 12              |   |
|           | 2019+       | (per year) | 105                                 | 40 - 80 | 200             | 65 - 130 | 0.2 - 200  | 3 - 8               | 8 - 28               |   |
| 20        | 22+ (India) | (per year) | 105                                 | 80      | 200             | 130      | 0.4 - 400  | 17                  | 48                   |   |

#### Current Status of aLIGO

- Currently in the fifth Engineering Run (ER5) runs are intended to be "practice" for the upcoming advanced instrument observational runs
  - Commissioning: Power/Dual Recycling Michaelson Inteferometer --- tests of the inner Michaelson interferometer without the long arms but using the power (laser side) and signal (output side) recycling mirrors along with the new aLIGO laser and stabilization systems
  - Commissioning: Half-InterFerOmeter X/Y tests of locking one long arm of the interferometer (includes light storage cavities)
  - Observing: Data analysis pipelines analyzing in near real time, sending out alerts of possible GW candidates in *O(min)*



## Commissioning Overview

#### LIGO-G1200071



## Commissioning (SUS/SEI/IMC)

- Commissioning new active seismic isolation systems — many of the interferometer chambers on triple/ quadruple suspensions (*passive isolation*) with active feedback loops
- Some concern about low frequency noise (trains) manifesting at higher frequencies within the chamber readout channels (*upconversion*)



# Commissioning (SUS/SEI/IMC)

- The problem was reported by DetChar to the seismic experts, who tuned the active isolation feedback loops to target the excess 1-3Hz motion induced by the train
- After this change excess ground motion upconversion into the IMC was diminished





# Online Detector Characterization (ODC) and Interferometer State

• Subsystem (e.g. IMC) status at a glance; used to inform the lowest order information about interferometer state



#### Strain Calibration

- Calibration pipeline being prototyped; calibrated data being produced within seconds of acquisition
- sensed length excess strain difference (hopefully  $\Delta L_{ext} \rightarrow$  $\gamma(t) C_L$  $e_D$ from GW!) D**Control signal** from interferometer DMT to shared memory from shared memory recolor IMC to aLIGO frames **PSD** DQ Vector IMC DQ vector h(t) > bit (post h(t) bit) mask ODC (pre h(t) bit)
- Current test setup uses different filters to "transform" IMC spectral data into GW strain data to distribute to low latency GW analyses



# Trigger / Veto Generators

- Trigger generators running for detector characterization purposes
  - Omicron O(1000) of channels, ~1-2 hours



time (s)

- gstlal\_excesspower
   O(100) of channels,
   ~few minutes
- Veto generation: hierarchical optimization of trigger rejection using auxiliary data



#### iDQ: low-latency glitch classification / vetoes

- Data from hundreds of instrumental channels are analyzed in low-latency (~minutes)
- Combining time-series analysis with multi-variate classifiers to recognize glitches in GW data



14

#### Impact on Multimessenger Astronomy

- Candidate event database (*gracedb*) is the clearing house for GW event information, including follow up from data quality checks and basic detector characterization feedback
- GW event candidates will be sent out within a few minutes of identification
  - Some data quality information already available: basic interferometer operational status, known environmental disturbances
  - Additional auxiliary vetoes generated within a few minutes up to a day
- Send follow up alerts down-ranking candidates based on data quality

| Dasic Im | 10            |       |         |                                                                       |                          |           |       |                         |  |  |
|----------|---------------|-------|---------|-----------------------------------------------------------------------|--------------------------|-----------|-------|-------------------------|--|--|
| UID      | Labels        | Group | Туре    | Instruments                                                           | GPS Time +<br>Event Time | FAR (Hz)  | Links | UTC ÷<br>Submitted      |  |  |
| T73979   | DQV           | Test  | LowMass | H1,L1,V1                                                              | 1045019974               | 8.053e-11 | Data  | 2013-07-18 22:07:01 UTC |  |  |
|          | Submitter     |       |         | Comment                                                               |                          |           |       |                         |  |  |
|          | GDB Processor |       | Data    | Data quality check completed H1L1V1-DATA_QUALITY-1045019964-20.xml.gz |                          |           |       |                         |  |  |
|          | Brian Moe     |       | Tag     | Tagged message 9: data_quality                                        |                          |           |       |                         |  |  |
|          | Chris Pankow  |       |         | H1L1V1-DATA QUALITY-1045019964-20.xml.gz                              |                          |           |       |                         |  |  |