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Purpose of Detector Characterization

• Detector Characterization is crucial to the 
instruments’ science output — earlier science runs 
(S5/S6) saw impacts on searches from both non-
stationary noise and transient effects:

• Detection Confidence: Families of loud 
transients / non-stationary noise can mimic a 
GW signal and reduce our ability to distinguish 
them from an astrophysical source

• Parameter Estimation: Transients obscure our 
ability to estimate the source parameters of a 
putative detection

• Multi-messenger Astronomy: Rapid data 
quality information is necessary to alert 
electromagnetic observatories of real events 
while minimizing the number of false alarms

2

Tail of background events
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Current Status of aLIGO

• Speculative: Instrument acceptance 
expected to come late this year or early 
next year with a ramp up to the blue 
sensitivity region (right) later in 2015

• Short commissioning breaks thereafter 
towards increasing sensitivity (green, 
red)
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Current Status of aLIGO

• Currently in the fifth Engineering Run (ER5) — runs are intended to be 
“practice” for the upcoming advanced instrument observational runs

• Commissioning: Power/Dual Recycling Michaelson Inteferometer --- tests 
of the inner Michaelson interferometer without the long arms but using the 
power (laser side) and signal (output side) recycling mirrors along with the 
new aLIGO laser and stabilization systems

• Commissioning: Half-InterFerOmeter X/Y — tests of locking one long arm 
of the interferometer (includes light storage cavities)

• Observing: Data analysis pipelines analyzing in near real time, sending out 
alerts of possible GW candidates in O(min)
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Commissioning (SUS/SEI/IMC)

• Commissioning new 
active seismic isolation 
systems — many of the 
interferometer 
chambers on triple/
quadruple suspensions 
(passive isolation) with 
active feedback loops

• Some concern about 
low frequency noise 
(trains) manifesting at 
higher frequencies 
within the chamber 
readout channels 
(upconversion)
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Commissioning (SUS/SEI/IMC)

• The problem was reported 
by DetChar to the seismic 
experts, who tuned the 
active isolation feedback 
loops to target the excess 
1-3Hz motion induced by 
the train

• After this change excess 
ground motion 
upconversion into the IMC 
was diminished
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Online Detector Characterization (ODC)
and Interferometer State

• Subsystem (e.g. IMC) status at a glance; used to inform the lowest order 
information about interferometer state

Loss of alignment 
of the IMC 

mirrors
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Strain Calibration

• Calibration pipeline being 
prototyped; calibrated data 
being produced within 
seconds of acquisition

• Current test setup uses 
different filters to 
“transform” IMC spectral 
data into GW strain data to 
distribute to low latency 
GW analyses
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Trigger / Veto Generators

• Trigger generators running 
for detector 
characterization purposes

• Omicron — O(1000) of 
channels, ~1-2 hours 

• gstlal_excesspower 
— O(100) of channels, 
~few minutes

• Veto generation: 
hierarchical optimization of 
trigger rejection using 
auxiliary data

auxiliary data triggers
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Application of Artificial Neural Networks to LIGO 
Auxiliary Channels for Noise Artifacts Identification

LIGO-G1200445

    In the gravitational wave channel (GW) of LIGO detectors, there is a significant number of noise artifacts of non-
astrophysical origin that give rise to high signal-to-noise ratio noise transients in the searches for gravitational waves 
from astrophysical sources. To detect gravitational wave signals effectively, the non-gaussian noise transients should 
be vetoed from gravitational wave channels. These noise artifacts originate from various sources such as seismic 
disturbance, environmental motion, thermal property of test mirror, suspensions, quantum effect of laser, and their 
combinations. Since hundreds of auxiliary channels, whose response to gravitational waves is negligible, monitor the 
noise sources, figuring out correlations between triggers in GW channel and auxiliary channels provides us with a 
useful tool for distinguishing real GW signals from noise artifacts. For this purpose, we employ Artificial Neural 
network (ANN), one of the popular machine learning algorithms, to handle large dimensional parameter space and 
complexity of noise patterns. In this presentation, we focus on the application results of ANN to the identification 
of noise artifacts using auxiliary channel data of the LIGO Hanford detector from the fourth Science Run (S4) and 
of Livingston detector from a week of the sixth Science Run (S6). This work is a part of the ongoing activities of 
applying machine learning algorithm such as Random Forest of Bagged Decision Trees, and Support Vector Machine 
to identification of noise artifacts using auxiliary channel information.

Abstract

Young-Min Kim1,2, Sang Hoon Oh2, John J. Oh2, Chang-Hwan Lee1, 
Ruslan Vaulin3, Lindy Blackburn4, Kari Hodge5, Rahul Biswas6, Reed Essick3

1 Pusan National University, 2 National Institute for Mathematical Sciences, 3 Massachusetts Institute of 
Technology, 4 Goddard Space Flight Center/NASA, 5 California Institute of Technology, 6 University of Texas at 
Brownsville

 Artificial Neural Networks (ANNs)
 A machine learning technique from the idea of simulating the data processing in human brains and mimicking 
the biological neural networks

 A simple mathematical model with node character, network topology, and learning rules in the 
viewpoint of data processing. 
 With a given network, when input layers 
receives external signals(X), final output value(Y) 
is calculated.
 From training, a well-made network gives a 
good guess.
  Applied Topics : Pattern Classification/
Completion, Function Approximation

 Other machine learning algorithms
 Please listen Kari Hodge’s presentation 

Introduction

 A short overview paper(Korean version) written by John Oh, https://kgwg.nims.re.kr/cbcwiki/ANNSReview?
action=AttachFile&do=view&target=ANNs_Elementary.pdf
 FANN library webpage, http://leenissen.dk/fann/wp/
 AuxMVC project page , https://wiki.ligo.org/foswiki/bin/view/DetChar/AuxMVC
 Modern Multivariate Statistical Technique, A. J. Izenman(2008), Springer
 The Elements of Statistical Learning 2nd edition, T. Hastie et al.(2008), Springer
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 A well-made network has an optimal set of connection weights(ωij) to minimize the error between the output 
value(Y) and the goal value in a given network topology.

 Popular training method - Back Propagation Algorithm
 Forward calculation : calculate Mean Squared Error(MSE) 
 Backward calculation : update all connection weights using iRPROP algorithm

 Tunable Parameters of iRPROP algorithm in FANN library
 Network topological parameters : number of layers, number of neurons at each layer, connection rate
 Node parameters : activation function, activation steepness

 Learning rule parameters : learning rate, increase/decrease factor(η+/η-), minimum/maximum step size(Δmin/

Δmax), number of iterations, desired error
 Optimal parameters are chosen by hand and/or through the optimization scheme such as a Genetic Algorithm (GA).

Training Method

!(t+1)
ij := !(t)

ij +�!(t)
ij

iRPROP(Igel &Hüsken,2009) 
implemented in FANN lib.

 
 We applied Artificial Neural Networks to the identification of noise artifacts and 
important auxiliary channels in LIGO S4/S6 data.

 Pre-processing on dt makes MVC performance better at low FAP.
 At FAP 0.01, the efficiency is ~ 0.4 for S4 and ~ 0.5 for S6.
Frequency and significance are of most importance among KW attributes from 
auxiliary channels.
SF of input variables can be good quantitative indicators of their importance to 
the ANN rank.

 Future plans
Optimized pipeline development - GA/ANN combined analysis
Implementation of ANN/GA module on GPU or FPGA  -  To speed up training 
and optimization
Investigation of alternative measures of SF
Test on other sorts of inputs (Omega, BLRMS, etc)

Conclusions and Future Works
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 Significant Factor (SF)
 Indicate an quantitative importance of an input variable(xi) to give an output(Y) 
 In ANN, total summation of all connection weights(red lines) connected to a 
given input variable(xi) is considered as SF.

 SF can tell us which channels are strongly associated with noise 

artifacts.

 19 of top 35 channels in ANN are matched 

with the result of HVeto.

Significant Input Variables

ANN

L1_OMC-QPD1_P_OUT_DAQ_32_2048=667289.817642
L1_OMC-QPD2_Y_OUT_DAQ_32_2048=660339.342513
L1_OMC-QPD2_P_OUT_DAQ_32_2048=648880.835468
L1_OMC-PZT_LSC_OUT_DAQ_8_1024=611644.083158
L1_OMC-QPD3_P_OUT_DAQ_8_1024=560136.453594
L1_OMC-QPD1_SUM_OUT_DAQ_32_2048=464637.187728
L1_OMC-QPD2_SUM_OUT_DAQ_32_2048=340147.925119
L1_ISI-OMC_CONT_RZ_IN1_DAQ_8_1024=321934.370699
L1_LSC-REFL_Q_32_2048=281685.246617
L1_OMC-QPD4_P_OUT_DAQ_8_1024=247231.541518
L1_OMC-QPD4_Y_OUT_DAQ_8_1024=238743.180353
L1_OMC-PZT_VMON_AC_OUT_DAQ_32_2048=213446.834119
L1_OMC-QPD3_Y_OUT_DAQ_8_1024=210633.289612
L1_ISI-OMC_GEOPF_H1_IN1_DAQ_8_1024=201769.172767
L1_ASC-WFS4_IP_8_256=186508.980033
L1_ASC-WFS3_IP_8_256=174079.131805
L1_ASC-RM_P_8_256=147316.587591
L1_LSC-POB_I_1024_4096=141248.58001
L1_LSC-PRC_CTRL_32_2048=140997.938081
L1_LSC-POB_I_32_2048=132375.465581
L0_PEM-HAM1_ACCZ_8_1024=130893.99712
L1_ASC-ETMX_P_8_256=127461.52814
L1_ASC-ETMY_P_8_256=114186.921959
L1_ISI-OMC_GEOPF_H2_IN1_DAQ_8_1024=108914.685549
L1_ASC-ITMY_P_8_256=108810.943927
L0_PEM-EY_SEISY_8_128=108150.738939
L1_ISI-OMC_GEOPF_V2_IN1_DAQ_8_1024=96507.9823112
L1_ASC-ITMX_P_8_256=91580.4862366
L1_ASC-WFS2_QP_8_256=84060.8204434
L1_ASC-WFS2_IP_8_256=75559.9162881
L1_ASC-WFS1_QP_8_256=73135.1890178
L1_OMC-DUOTONE_OUT_DAQ_1024_4096=69635.8853255
L1_SUS-ETMY_SENSOR_SIDE_8_256=69559.2061476
L1_ASC-QPDY_Y_8_128=63663.2104693
L1_SEI-ETMX_Y_8_128=61582.3383791

HVeto

L1_LSC-POB_Q_1024_4096
L1_OMC-PZT_LSC_OUT_DAQ_8_1024
L1_ISI-OMC_GEOPF_H2_IN1_DAQ_8_1024
L0_PEM-LVEA_SEISZ_8_128
L1_ISI-OMC_GEOPF_H1_IN1_DAQ_8_1024
L1_ASC-ITMY_P_8_256
L0_PEM-LVEA_BAYMIC_8_1024
L1_ASC-BS_P_8_256
L1_LSC-POB_Q_32_2048
L1_ASC-ITMX_P_8_256
L1_ASC-WFS1_QY_8_256
L1_SUS-ETMX_SENSOR_SIDE_8_256
L1_SUS-ETMY_SENSOR_SIDE_8_256
L0_PEM-EX_SEISX_8_128
L1_ASC-ITMY_Y_8_256
L1_OMC-QPD1_P_OUT_DAQ_32_2048
L1_ASC-WFS2_IP_8_256
L1_ASC-ETMX_Y_8_256
L1_OMC-PZT_VMON_AC_OUT_DAQ_32_2048
L1_OMC-QPD1_SUM_OUT_DAQ_32_2048
L1_ASC-WFS2_QY_8_256
L1_SUS-RM_SUSPIT_IN_8_32
L1_OMC-QPD2_Y_OUT_DAQ_32_2048
L1_OMC-QPD2_SUM_OUT_DAQ_32_2048
L1_OMC-QPD2_P_OUT_DAQ_32_2048
L1_ASC-ITMX_Y_8_256
L1_ASC-WFS2_IY_8_256
L1_OMC-QPD3_Y_OUT_DAQ_8_1024
L1_LSC-PRC_CTRL_32_2048
L1_OMC-QPD3_P_OUT_DAQ_8_1024
L0_PEM-HAM1_ACCZ_8_1024
L1_ASC-WFS1_QP_8_256
L0_PEM-EY_MAGX_1_1024
L1_OMC-QPD4_P_OUT_DAQ_8_1024
L0_PEM-LVEA_MAGY_1_1024

SF

S(i) = �M |(w(i, l1)w(l1, l2)....w(lM�1, lM )w(lM , o)|
�M = �L1

l1=1�
L2
l2=1.....�

LM�1

lM�1=1

 Noise artifacts (called glitches) : generated by running KleineWelle (KW) over GW channel from the LIGO Hanford 
detector(S4) and Livingston detector(S6).
 Clean Samples : 105 randomly distributed times ti within the live-time of detector operation.

 LIGO S4 (Feb.22.2005~Mar.23 2005) Auxiliary 
channel data from Hanford Detector
•input dimension : 810 (=162 ch. x 5 attr.)
•Glitches : 16174
•Clean Samples : 98147

 LIGO a week of S6 (May.29.2010 ~June.4.2010) 
Auxiliary channel data from Livingston Detector
•input dimension : 1250 (=250 ch. x 5 attr.)
•Glitches : 2826
•Clean Sample : 99869

Data Preparation

 100ms window data : reduction of 5s time window to 100ms for dt (time difference between triggers in GW channel 
and Auxiliary channels)
 Transformation of dt : dt ---> -sign(dt)*log(abs(dt)), exp(-abs(dt)/τ)

Pre-Processing

Tunable parameters choice :  parameter sets with best performance in about 200 trials
Log transformation on dt values is applied for all cases.
In most cases, the efficiency is about 
0.4 for S4 and 0.5 for S6 at FAP 0.01.
Not all auxiliary channels are relevant 
to glitches.
! hveto_channels_data, 

minimal_data
Using significant attributes 
(signif,dt,freq) of auxiliary channels is 
quite useful.
! signif_dt_data, signif_data, 

dt_data, signif_dt_freq_data
Subset data of auxiliary channels 
could be more informative.
Many glitches are not classified with 
high ANN rank.
! Parameter Optimization is 

important for ANN.
Please see comparison results of 
ANN and other MVC methods in Kari 
Hodgeʼs Presentation.

Application Results

 We thank LIGO Scientific Collaboration for the use of the LIGO S4/S6 data.

data : a week of S6 from Livingston detector

• Data from hundreds of instrumental channels are analyzed in low-latency (~minutes)

• Combining time-series analysis with multi-variate classifiers to recognize glitches in GW 
data

iDQ: low-latency glitch classification / vetoes
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Impact on Multimessenger Astronomy

• Candidate event database (gracedb) is the clearing house for GW event information, including 
follow up from data quality checks and basic detector characterization feedback

• GW event candidates will be sent out within a few minutes of identification

• Some data quality information already available: basic interferometer operational status, known 
environmental disturbances

• Additional auxiliary vetoes generated within a few minutes up to a day

• Send follow up alerts down-ranking candidates based on data quality
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