Arm Environmental Study - Water-level measurement -

Yutaka Shikano
KAGRA DetChar Group
2016/8/26

Low-frequency noise budget on LIGO

From noise budget in Feb. and Mar. 2011

Aim

 Toward the stable operation of KAGRA, environmental status inside KAGRA mine should be identified.

- The expected noise sources around the low frequency are
 - Underground water
 - Air pressure (due to the dead end of X arm)
 - Temperature
 - Humidity

DetChar group strategy: What physical quantities should be measured?

WF-BT + WL-YT + WL-AT

One-day period measurement

Stand-alone water level logger

http://www.weather.co.jp/catalog_html/hobo/U20.htm

• CO-U20-001-04 (Onset)

Part number	U20-001-04/ U20-001-04-Ti	U20-001-01/ U20-001-01-Ti	U20-001-02/ U20-001-02-Ti	U20-001-03/ U20-001-03-Ti
	HOBO Water Level Specifications			
Range	0-4 m (0-13 ft) 0-145 kPa (0-21 psia)	0-9 m (0-30 ft) 0-207 kPa (0-30 psia)	0-30 m (0-100 ft) 0-400 kPa (0-58 psia)	0-76 m (0-250 ft) 0-850 kPa (0-123 psia)
Factory Calibrated Range (0° to 40°C; 32° to 104°F)	69 to 145 kPa (10-21 psia)	69 to 207 kPa (10-30 psia)	69 to 400 kPa (10-58 psia)	69 to 850 kPa (10-123 psia)
Water Level Accuracy (Typical Error)	± 0.3 cm (0.01 ft) (± 0.075% FS)	± 0.5 cm (0.015 ft) (± 0.05% FS)	± 1.5 cm (0.05 ft) (± 0.05% FS)	± 3.8 cm (0.125 ft) (± 0.05% FS)
Resolution	0.14 cm (0.005 ft)	0.21 cm (0.007 ft)	0.41 cm (0.013 ft)	0.87 cm (0.028 ft)
Burst Pressure	310 kPa (4 18 m (60 f		500 kPa (72.5 psia) 40.8 m (134 ft) depth	1200 kPa (174 psia) 112 m (368 ft) depth
Temperature Specifications (all models)				
Range	-20° to 50°C (-4° to 122°F)			
Accuracy	± 0.37° @ 20°C (±	0.67° @ 68°F) ± 0.44	1° from 0° to 50°C (± 0.79° fr	om 32° to 122°F)
Resolution (10 bit)	0.1° @ 20°C (0.18° @ 68°F)			
Response time	5 minutes (to 90% in water)			
Dimensions	2.46 cm diarneter x 15 cm (0.97 x 5.9 in) hole in mounting bail 6.3 mm (0.25 in)			
CE compliant	Yes			

WL-AT

pic1 Pic2

WL-WT

pic3

pic4

WL-Y2

Pic6 Pic7

WL-XE

Pic8

The water-level logging system is needed for the modification by the air pressure.

Therefore, we can measure two points (WL-XE and WL-Y2) only.

5-min period sampling

Toward more high sampling water-level measurement

Raspberry Pi 3 / OS: Raspbian

- + WEB camera
- + Image recognition

Target Sampling Rate: 50 Hz, Cost: < 10,000 JPY

+ Alert system on water-level

Schedule: By August 2017

Additional measurement?

Drainage pipe flow meter will be installed.

Drain pipe under ground

Compulsory
Drainage pipe

Sampling Rate: 50 Hz Water flow velocity

@ Y-end

Air pressure: Daily fluctuation

DetChar Env arm monitor

As the minimum setup

- Temperature (arm distribution)
- Humidity (arm distribution)
- Air pressure (arm distribution / daily fluctuation)
- Magnetic Field (arm distribution (mainly DC component)

As add-on function, we will prepare the mini-amp system to measure the USB-based module.

Ex. Accelerator / High-precision magnetic filed

Setup

Schedule

- - Nov. 2016
 - Set up at IMS, NINS
 - Test operation at IMS, NINS

- Dec. 2016
 - Test installation at KAGRA
- Jan. Mar. 2017
 - Adjustment and full installation at KAGRA
- Budget
 - Tentative budget from Shikano group at IMS, NINS

Summary

 Toward the construction of arm environmental monitor system, we measure the underground water by 5-min period.

Underground water-level is oscillated daily.

Air pressure inside KAGRA arm is oscillated daily.

Environmental modelling is needed.