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We consider Newtonian noise from a water channel and a water fall and estimate how large these Newtonian noises
are to conclude whether it finally affects KAGRA sensitivity or not.

I. NEWTONIAN NOISE FROM A WATER CHANNEL

A. Noise power spectrum
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Figure 1. Schematic views of Newtonian force exerted on a mirror from a water channel.

We consider a turbulent water flow along a channel near a mirror. Suppose that D is closest distance between
a mirror and the water channel, w is width of the water channel, v is average velocity of the water flow, and δv is
velocity fluctuation from the average. The time scale of the water flow relevant to Newtonian noise is D/v, while the
time scale of water turbulence is w/δv. If the condition

D

v
≪ w

δv
, (1)

is satisfied, the spacial pattern of the water surface does not change during the relevant period of interaction with the
mirror. Indeed, for D = 2m, w = 0.4m, v = 1m/s, and δv = 0.03m/s 1, the above condition holds well. Then the
water flow is treated as a fixed water-surface pattern flowing with constant velocity (Yanbei Chen’s model 2 [2]).
Denoting the coordinates of a water fragment with density ρ by x along water flow and y across the channel and

water surface height by b(t, x, y), the Newtonian force exerted on the mirror is

F (t) =

∫ ∞

−∞
dx

∫
dy

Gρb(t, x, y)

D2 + x2 + y2
cos θ

= Gρ

∫ ∞

−∞
dx

∫
dy

b(x, y)x

(D2 + x2 + y2)3/2

= −Gρ

∫ ∞

−∞
dx

∫
dy

∂b(t, x, y)

∂x

1

(D2 + x2 + y2)1/2

≈ −Gρw

∫ ∞

−∞
dx

∂b(t, x)

∂x

1

(D2 + x2)1/2
. (2)

1 δv is typically less than 3% of v for an open channel [1].
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At the last line, we assumed x ≫ y and ignored water height fluctuations in the y direction just for simplicity. Actually
this slightly overestimates the noise. The Fourier transform is

F̃ (Ω) = ikGρwb̃(Ω, k)

∫ ∞

−∞
dx

e−ikx

(D2 + x2)1/2

= 2ikGρwb̃(Ω, k)

∫ ∞

0

dx
cos(kx)

(D2 + x2)1/2

= 2ikGρwb̃(Ω, k)

∫ ∞

0

dx′ cos(kDx′)

{1 + (x′)2}1/2

= 2ikGρwb̃(Ω, k)K0(kD) , (3)

where K0 is the 0th order modified Bessel function of the second kind. Since v = Ωk in the x direction, the Fourier
component is expressed as a function of Ω and v:

F̃ (Ω) =
2iGρwΩ

v
b̃ (Ω)K0

(
ΩD

v

)
. (4)

Defining the power spectral densities by

⟨F̃ (Ω)F̃ ∗(Ω′)⟩ = SF (Ω)δ(Ω− Ω′) , (5)

⟨b̃(Ω)b̃∗(Ω′)⟩ = Sb(Ω)δ(Ω− Ω′) , (6)

we have √
SF (Ω) =

2GρwΩ

v
K0

(
ΩD

v

)√
Sb(Ω) . (7)

In terms of strain amplitude, it is

√
Sh(Ω) =

2Gρw

ΩLv
K0

(
ΩD

v

)√
Sb(Ω)

=
2Gρw

Ωv
K0

(
ΩD

v

) √
Sb,1Hz

L

(
f

1Hz

)β/2

. (8)

The modified Bessel function K0(q) is shown in Fig. 2. This function gives exponential suppression at q ≫ 1. That is,
the noise is drastically suppressed at high frequencies, large distance from the mirror, or small water velocity. Some
examples of the power spectrum are shown in Figs. 3 - 5.

Figure 2. Modified Bessel function of the second kind, K0(q) (blue) and K1(q) (orange).
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Figure 3. Power spectra of Newtonian noise from a water channel as a function of frequency f (Ω = 2πf) for different water flow
velocities v = 1m/s (blue), 2m/s (orange), and 5m/s (green). Other parameters are set to D = 2m, w = 0.4m, ρ = 1g/cm3,
L = 3km, β = 0, Sb,1Hz = 1 cm2/Hz. The red line is KAGRA design noise curve [3].

Figure 4. Power spectra of Newtonian noise from a water channel as a function of frequency f (Ω = 2πf) for different distance
to the mirror D = 5m (blue), 2m (orange), and 1m (green). Other parameters are set to w = 0.4m, ρ = 1g/cm3, L = 3km,
β = 0, Sb,1Hz = 1 cm2/Hz, v = 2m/s. The red line is KAGRA design noise curve [3].

B. Water velocity in an open channel

For a long wave whose wavelength is much larger than depth and width of a channel, water flow velocity is given
in Sec. 13 of [4]

v =

√
gS0

w
. (9)

Here g is gravity acceleration, S0 is water flow cross-section, and w is width of the channel at the water surface. For
g = 9.8m/s2, S0 = πw2/8 (half pipe), and w = 0.4m, the velocity is v = 1.24m/s.
For a short wave whose wavelength is smaller than depth and width of a channel, water flow velocity is given in

Sec. 12 of [4]

v =
1

2

√
gλ

2π
. (10)

Since λ ≪ w, the velocity of a short wave should be smaller than that of a long wave. Therefore, consequent Newtonian
noise caused by short waves is subdominant.
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Figure 5. Power spectra of Newtonian noise from a water channel as a function of frequency f (Ω = 2πf) for different spectral
tilt β = 0 (blue), −2 (orange), and −4 (green). Other parameters are set to D = 2m, w = 0.4m, ρ = 1g/cm3, L = 3km,
Sb,1Hz = 1 cm2/Hz, v = 2m/s. The red line is KAGRA design noise curve [3].

II. NEWTONIAN NOISE FROM A WATER FALL

A. Noise power spectrum
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Figure 6. Schematic views of Newtonian force exerted on a mirror from a water fall.

The derivation of noise power spectral density is similar to that in the previous section. But in this case, water falls
from a ceiling to a floor, being accelerated by gravity and changing velocity. For simplicity we assume that velocity is
constant during the fall and take maximum velocity as the constant velocity. In this sense, we overestimate the noise,
but our estimation should be conservative. Under this assumption the computation is parallel to that in the previous
section.

Denoting the coordinates of a water fragment with density ρ by z along the vertical (water-falling) direction and



5

(D, y) on the horizontal plane and water cross-section by A(t, z), the Newtonian force exerted on the mirror is

F (t) =

∫ ∞

−∞
dz

GρA(t, z)

D2 + y2 + z2
cosϕ

= Gρ

∫ ∞

−∞
dz

A(t, z)(D2 + y2)1/2

(D2 + y2 + z2)3/2

≈ GρD

∫ ∞

−∞
dz

A(t, z)

(D2 + z2)3/2
. (11)

At the last line, we assumed y ≪ D and dropped the y coordinate. This always underestimates actual distance from
a mirror and overestimates corresponding Newtonian noise. The Fourier transform is

F̃ (Ω) = GρDÃ(Ω, k)

∫ ∞

−∞
dz

e−ikz

(D2 + z2)3/2

= 2GρDÃ(Ω, k)

∫ ∞

0

dz
cos(kz)

(D2 + z2)3/2

=
2GρÃ(Ω, k)

D

∫ ∞

0

dz′
cos(kDz′)

{1 + (z′)2}3/2

= 2kGρÃ(Ω, k)K1(kD) , (12)

where K1 is the 1st order modified Bessel function of the second kind. Since v = Ωk in the z direction, the Fourier
component is expressed as a function of Ω and v:

F̃ (Ω) =
2GρΩ

v
Ã (Ω)K1

(
ΩD

v

)
. (13)

Defining the power spectral densities by

⟨F̃ (Ω)F̃ ∗(Ω′)⟩ = SF (Ω)δ(Ω− Ω′) , (14)

⟨Ã(Ω)Ã∗(Ω′)⟩ = SA(Ω)δ(Ω− Ω′) , (15)

we have √
SF (Ω) =

2GρΩ

v
K1

(
ΩD

v

)√
SA(Ω) . (16)

In terms of strain amplitude, it is√
Sh(Ω) =

2Gρ

ΩLv
K1

(
ΩD

v

)√
SA(Ω)

=
2GρL

Ωv
K1

(
ΩD

v

) √
SA,1Hz

L2

(
f

1Hz

)α/2

. (17)

The modified Bessel function K1(q) is shown in Fig. 2. This function gives exponential suppression at q ≫ 1. That
is, the noise is drastically suppressed at high frequency, large distance from the mirror, or small water velocity. Some
examples of the power spectrum are shown in Figs. 7 - 9.

B. Velocity of water falling in gravity

In case of a water sphere with diameter from a few to several cm in the air with room temperature, inertial resistance
force balances with gravitational force and gives terminal velocity

vt = 4

√
rg

3
, (18)

where r is radius of the sphere. For r = 1 cm, 3 cm, and 10 cm, the final velocity is 0.72m/s, 1.3m/s, and 2.3m/s,
respectively.
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Figure 7. Power spectra of Newtonian noise from a water fall as a function of frequency f (Ω = 2πf) for different water flow
velocities v = 1m/s (blue), 2m/s (orange), and 5m/s (green). Other parameters are set to D = 2m, ρ = 1g/cm3, L = 3km,
α = 0, SA,1Hz = 54 cm4/Hz. The red line is KAGRA design noise curve [3].

Figure 8. Power spectra of Newtonian noise from a water fall as a function of frequency f (Ω = 2πf) for different distance
to the mirror D = 5m (blue), 2m (orange), and 1m (green). Other parameters are set to ρ = 1g/cm3, L = 3km, α = 0,
SA,1Hz = 54 cm4/Hz, v = 2m/s. The red line is KAGRA design noise curve [3].

III. DISCUSSION

From Figs. 10 and 11, we see that the parameter region that KAGRA sensitivity is contaminated by water Newtonian
noise is an extreme case in which water velocity is so high (v >∼ 10m/s) or water flow is so close to a mirror (D <∼ 1m).
Therefore it seems that water Newtonian noise is irrelevant to KAGRA.

However, this conclusion should be taken with a caution. In the computation, we assume that water turbulence
does not evolve in a time scale shorter than the interaction time scale of the water flow, i.e. Eq. (1). This condition
must be checked in actual measurements of a water surface. In addition, critical parameters, v and D, should be
measured.

Finally here we considered Newtonian noise from a water flow, but water makes sounds and may contribute to
KAGRA sensitivity (water acoustic noise). For example, when a water fall hit a floor and when a water flow is highly
turbulent at an obstacle or a corner.
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Figure 9. Power spectra of Newtonian noise from a water fall as a function of frequency f (Ω = 2πf) for different spectral tilt
α = 0 (blue), −2 (orange), and −4 (green). Other parameters are set to D = 2m, ρ = 1g/cm3, L = 3km, SA,1Hz = 54 cm2/Hz,
v = 2m/s. The red line is KAGRA design noise curve [3].

Figure 10. Parameter region on (v,D) plane where water Newtonian noise from a water channel exceeds KAGRA design noise
at a certain frequency: f = 3Hz (blue), 10Hz (green), and 20Hz (red). Other parameters are set to w = 0.4m, ρ = 1g/cm3,
L = 3km, β = 0. Sb,1Hz = 1 cm2/Hz (left) and Sb,1Hz = 25 cm2/Hz (right).
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Figure 11. Parameter region on (v,D) plane where water Newtonian noise from a water fall exceeds KAGRA design noise at a
certain frequency: f = 3Hz (blue), 10Hz (green), and 20Hz (red). Other parameters are set to ρ = 1g/cm3, L = 3km, α = 0.
SA,1Hz = 54 cm2/Hz (left) and SA,1Hz = 104 cm2/Hz (right).


