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motivation - correlation analysis using environmental channels

Our Goal : find correlated noise between ~10000 physical

environmental (PEM) channels and finally localize noise sources

- Remove the noise sources to improve detector sensitivity

- I[dentify false trigger event generated by GW search pipeline

-> the contribution to increase GW detection efficiency

In this talk,
- GW channel

as sensitive channel to GW
- PEM channel such as,
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Example of the correlated noise observed in LIGO and Virgo
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Example of non-linear correlation observed in LIGO and Virgo

GW channel seismometer
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Up-converted noise: =
Noise origin has low frequency component. 8Hz -
Transferr Ise has high f Wil Ll
ansferred noise has hig requency 200Hz ,‘ofl‘*%’“"‘.'ﬂ'\"n' ! _'l |
component because of up-conversion. .

: LNC, CQG 2012
Example: a e, | B
Seismic glitches will cause scattered light g\ % g S
noise. TN \ [

Especially in bad weather day, seismic 0" N \/

glitch is strong. 10° .
Non-linear correlation over a few Hz ~ a few
hundreds Hz in GW channel was observed o
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To reveal noise source and noise contamination Hayama (2014)
path, the detection of non-linear correlated noise J.Asis etal. (2012) [gr-qc 1203.5613]
IS Important. [CQG 27, 19 (2010) 194011]

The conventional correlation analysis methods
can not detect the non-linear correlation.



Correlation analysis methods

In this study, two methods are used,

- Pearson Correlation Coefficient
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- efficient method to linear correlation” = /

- Maximum Information Coefficient (MIC)
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Maximum Information Coefficient (MIC)
[David N. Reshef, et al. Science 334, 1518 (2011)]

o If a relationship exists between two data, a grid can be drawn on the scatter
plot of two data that partitions the data to encapsulate that relationship.
o For each placement of partition, the mutual information is calculated.
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o The MIC is defined as the mutual information maximized under all the
possible grids with RC < B(N)

B(N) is maximal number of cell and is used B(N) = NO-6 now.



Which correlation MIC can find?

o MIC can find not only linear but also non-linear correlation.

Maximal Information Coefficient (MIC)
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Up-conversion noise observed at Virgo detector

[Classical and Quantum Gravity 27, 19 (2010) 194011]
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The strong seismic activity generate the S
scattering light. The structure with many Spectrogram of secondary scattering light
peaks are caused by scattering light noise. noise

The contaminated sensitivity curve is worse

more than 1 order.

The past Virgo detector has been limited by this noise.
This up-conversion noise is solved now and well-modeled.



Mechanism of the up-conversion

[Classical and Quantum Gravity 27, 19 (2010) 194011]

We monitor motion of mirror via accelerometer.

0Xsc(t)
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We monitor GW channel S(t) .
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Up-conversion noise model observed at Virgo detector

[Classical and Quantum Gravity 27, 19 (2010) 194011]

Up-CoONVersion noise

Yy
hse(t) = G - sin (7($0 + 5333c(t))) Lo :distance between end mirror and reflector

dzsc(t) : displacement of mirror by seismic activity

G : constant factor depending on interferometer (G = 5 x 10~2")
A : laser wavelength (1064 [nm])

GW channel:  s(t) = hse(t) + n(t)
n(t) : fundamental noise of GW detector
(Virgo sensitivity is used. Assuming gaussian and stationary noise)
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Up-conversion noise model observed at Virgo detector

[Classical and Quantum Gravity 27, 19 (2010) 194011]

Up-CoONVersion noise

Yy
hse(t) = G - sin (7($0 + 5333c(t))) Lo :distance between end mirror and reflector

dzsc(t) : displacement of mirror by seismic activity

G : constant factor depending on interferometer (G = 5 x 10~2")
A : laser wavelength (1064 [nm])

GW channel:  s(t) = hse(t) + n(t)
n(t) : fundamental noise of GW detector
(Virgo sensitivity is used. Assuming gaussian and stationary noise)

displacement of mirror excited by seismic activity

0xsc(t) = Ap, sin(2m frt) exp(—t/7) + Ngeis(t)

A,,, :amplitude of mirror’s displacement T = O.l[sec] : damping time
(estimated from Virgo paper)
fn = 15[Hz] : resonant frequency of optical bench

Nseis (t) : stationary motion of mirror,
Assuming gaussian and stationary noise and S(f) = 10/ {-8}[m/sqrtHz]
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Scatter plot of simulated data
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Classification of relations between simulated data

no correlation
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How to calculate ROC curve

We calculate Receiver Operating Characteristic(ROC) curve using obtained false
alarm probability(FAP) and efficiency with 10000 trials.

histogram _ . l MIC(signal)
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For each histogram, we calculate false alarm probability(FAP) and detection efficiency
at each threshold x:p,

false alarm probability (xp) Z P(x3)/Protal

T>Ttp

efficiency (¢, ) Z q(23)/Gtotal

T>Tip

Ptotal = ZP(ZCZ)
)

Qtotal = Z Q(x’b)
)
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Evaluated performance of analysis methods - ROC curve

Good performance
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ciciency

Evaluated performance of analysis methods - ROC curve

In
the efficiency of Pearson and MIC is low
because data has no correlation.
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the case of Am = 10-9 and

In the case of Am = 2x10-7, the Pearson

has a good performance,
because data has linear correlation

As noise origin increase from Am = 2x10-7
to Am = 10—9, the performance of MIC

increase, because MIC can find linear
correlation as well as non-linear correlation

This result shows that the MIC is a

promising method
to find a non-linear relationship.
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Summary

o In the past operations of GW detectors, the correlated noise between
multiple channels participated in preventing the achievement of the
design sensitivity. The unknown noise still remains.

o We introduced the up-conversion noise and its model which is
observed in Virgo detector and well-modeled.

o We propose the maximal information coefficient(MIC) to find non-
linear correlation as well as linear correlation.

o The simulated ROC curve shows that the MIC can find the non-
linearly correlated noise more efficiently than the Pearson correlation
method.
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Mechanism of this up-conversion

[Classical and Quantum Gravity 27, 19 (2010) 194011]
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(D Strong seismic activity (such as microseism..) excite resonant motion of

optical bench and generate damping motion of optical bench.
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Mechanism of this up-conversion

[Classical and Quantum Gravity 27, 19 (2010) 194011]

.+ west arm

mode cleaner

LASER... @ 3 <

P north arm mirror

:" | | .’ laser beam optical bench
External I _ _ _
Injection ' mirror microseism
Bench '

L

dark.i:.lri.nge | seismic activity
—>0 “—>
GW detector P A e A
fres ~ 10 — 20Hz

(@ The motion of optical bench causes damping motion of mirror installed on optical
bench
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Mechanism of this up-conversion

[Classical and Quantum Gravity 27, 19 (2010) 194011]
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@ Time variation of optical path length between end-mirror of cavity and mirror on optical

bench because of damping motion of mirror on optical bench
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Mechanism of this up-conversion

[Classical and Quantum Gravity 27, 19 (2010) 194011]

.+ west arm

mode cleaner

LASER... @ 3 <
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:" | | | = etpaser beam optical bench
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(@) After modulated laser is returned to cavity, modulated laser will be noise source

because of different phase.
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Mechanism of this up-conversion

[Classical and Quantum Gravity 27, 19 (2010) 194011]

. westarm

mode cleaner @

>

LASE?":': north arm @ mirror

e optical bench

Injection ' -

SHnlafirs mirror

dark’;:-r‘i'nge
seismic activity

Optical system behind end-mirror controls GW detector <-—->CD —>
using transmitted laser. ———————

Sometimes accidentally transmitted laser is returned to cavity.

(D Strong seismic activity (such as microseism) excite resonant motion of optical bench and

generate damping motion of optical bench.
(2 damping motion of mirror installed on optical bench

(3 time variation of optical path length between end-mirror and mirror on optical bench

because of damping motion of mirror on optical bench
4 After modulated laser is returned to cavity, modulated laser will be noise source

because of different phase. 53



