Size: 9855
Comment:
|
Size: 10323
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 61: | Line 61: |
=> それぞれの手法の相関の度合いを表す検出統計量は単純には比較することができないため、それぞれの手法のreceiver operating characteristic(ROC) curveの比較を行った。 | |
Line 63: | Line 64: |
=> 毎日、端山さんと昼食をとりながらの議論を行い研究を進めた。 | |
Line 65: | Line 67: |
=> 執筆した原稿をPRDに投稿した(2016年2月16日) | |
Line 67: | Line 70: |
=> 実際の重力波検出器から得られたデータに対してMICを適用する、またはより精密なシミュレーションに基づいてノイズデータを生成した方ががよいとのコメントであった | => レフリーからコメントを受け取った(2016年3月1日) 実際の重力波検出器から得られたデータに対してMICを適用する、またはより精密なシミュレーションに基づいてノイズデータを生成した方ががよいとのレフリーコメントであった |
Line 79: | Line 83: |
* (2タスク) 上記ノイズデータにアップコンバージョンノイズを埋め込み、相関解析(Pearson, MIC)を用いて解析する 時系列グラフ、スペクトル、データのホワイトニング、ホワイトニングしたスペクトル、散布図、receiver operating characteristic(ROC) curveの確認をする |
* (2タスク) 上記ノイズデータにアップコンバージョンノイズを埋め込み、相関解析(Pearson, MIC)を用いて解析する。 時系列グラフ、スペクトル、データのホワイトニング、ホワイトニングしたスペクトル、散布図、receiver operating characteristic(ROC) curveの確認をする => |
Correlation Analysis between environmental channels
Projects
- Hot correlation map
- Investigation into correlators
- finding linear correlation
- finding non-linear correlation
Project description
KAGRAには重力波チャンネル以外に環境チャンネルが1万程度の補助チャンネルの設置が予定されている。 本研究ではそれらの補助チャンネル同士の相関を取ることによって、補助チャンネルや重力波チャンネルに混入したノイズ源の特定ならびに混入したノイズがチャンネル間を伝搬メカニズムするメカニズムを明らかにすることを目的とする。
ノイズが伝搬するメカニズムは一般には線形または非線形メカニズムが考えられるが、過去の重力波検出器診断(detector characterization)では主に線形メカニズムの特定に重きを置いていた。本研究ではさらに踏み込んで、非線形なメカニズムをも明らかにできるような相関解析を目指している。 それらのメカニズムを解き明かすための手段として、ピアソンの積率相関係数とMaximum Information Coefficientを用いる。前者は線形的な相関を明らかにし、後者は線形以外の相関をも明らかにすることができる。
Project schedule and Task List
1タスクの定義は1週間程度で終わらせることができる研究
他研究グループのDetector Characterizationによる先行研究の把握
- 以下の論文を読む(1タスク)
1 http://arxiv.org/abs/1111.4516
Hot correlation mapの作成
- テストデータの作成, Haskell上でのデータのIO(1タスク)
- ピアソンの積率相関係数の計算を行う関数の作成(1タスク)
- 2つのチャンネルデータを読み込み、あるデータ長Nについてデータの相関係数を求める。 チャンネル間に混入したノイズが同時刻だけ限らないので、相関係数を計算する開始時刻をずらして計算を行い、2つのデータの中で相関係数の最大値を求める(2タスク)
- HTMLを用いて表形式で相関マップ(Hot correlation map)の作成する。横軸と縦軸がchannel名(データの名前)、各channel名がクロスするセルに相関係数の値を書き、わかりやすさのためにその値の大きさを色合いで表現する (1タスク)
- 上項目をHaskellの関数として作成する、入力 相関値のテーブル、出力はhtmlソース(1タスク, ~7/14)
- それぞれのデータがガウシアンの場合は、ピアソンの積率相関係数の分布はデータ数をnとして自由度(n-2)のt分布に従うことが知られている。しかしデータがガウシアンでない場合の分布は計算されたピアソンの積率相関係数の分布は簡単にはモデル化することができないと予想される。そこで、過去の計算した相関値からcumlativeには何%の位置なるのかを計算して、評価したい。このような手法を用いることで、例えばchannel1とchannel2の相関値R_12とchannel1とchannel3の相関値R_13は直接は比較することはできないが、全体の何%に所属しているかで相関があるorないを評価することができる。
-> 間野さんより、permutation testを用いてはどうかというとともに、C言語で書かれたサンプルコードをいただいた。
- permutation testについては理解できたのでこれをHaskellで実装する(1タスク)
混入したノイズの同定
upconverted noise に関する先行研究の理解 http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-8-8329