Size: 3747
Comment:
|
Size: 3988
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 47: | Line 47: |
* シミュレーション信号で与えた$nu$付近が求まる事を確認 * CLIOデータでファイルIOからプロットまでの動作を確認 * LIGOデータ(S6)でいくつかのチャンネルデータをプロット |
Student-t noise modeling
Project description
重力波望遠鏡における雑音は扱いやすさからガウス性を仮定する事があるが、
現実的にはガウス雑音に比べ、裾を持った非ガウスな分布となっている事が多い。
この非ガウスさがどの程度であるかを把握する事は望遠鏡の状態を知る上で非常に重要な要素であり、
重力波探索に置いても非ガウスさ仮定する事でパフォーマンスが向上するという報告もなされている
本研究の最も重要な目的は干渉計雑音の非ガウスさを定量化し、干渉計診断の1つの指標とすることである
この際、非ガウスさの指標にはStudent-t分布のパラメータ$\nu$を用い、
オンライン/オフライン問わずに非ガウスさを追えるモニタを実装し、
望遠鏡の状態把握、重力波探索などに利用できる指標を提供する。
Project schedule and Task List
1. 非ガウスさ$\nu$推定ルーチンの実装
参考文献の再現 (〜6/10)
quantileを基準に最適な$\nu$を推定
$\nu$の探索範囲は[4:100] ($\nu$が大きいと解析パフォーマンス改善の恩恵は無い)
シミュレーション信号を用いたフィッティングテスト (〜6/17)
$\nu$が既知の信号に対してモデリングを行う -> 高いquantileの方が$\nu$の再現がよい(定常乱数の場合)
参考文献の改善 or 新たな方法の考案 (〜7/7)
$\nu$の決定精度はどの程度必要か
dT, dFをどのように決めるか
どのquantileを基準とするか
quantile以外の基準の検討 -> 分布全体でフィッティング(最小二乗法)
2. リアルタイムノイズモデリング
実データを用いた準リアルタイムモデリングのテスト (〜7/14)
/frames以下のデータでテスト -> 16kHzサンプリング128秒のデータを10秒程度で処理できている
CLIO, TAMAデータを用いる
シェルスクリプト等でT秒おきにファイルを食わせて走らせる
計算コストの見積もり、削減によりリアルタイム化 (〜7/21)
計算の大半がSFTとソートorヒストグラム化(Vectorで高速化?)
プログラム全体としてはIO, 画面描画が遅い?
3. DetCharシステムに組み込み
HasKAL GUIから動かす (〜7/22)
Analysis method
- 時系列雑音をTF平面に変換:SFT
- 各周波数ビンごとにヒストグラム化:Cern ROOT
- ヒストグラムのフィッティング:最小二乗法(GSL), CDFのquantile, 最尤法
Results
- シミュレーション信号で与えた$nu$付近が求まる事を確認
- CLIOデータでファイルIOからプロットまでの動作を確認
- LIGOデータ(S6)でいくつかのチャンネルデータをプロット
Ploblem
- 計算高速化の目処が立たない
- 16kHzの主干渉信号に対して、リアルタイム処理が実現できない(Overlapにもよる)
- 低サンプリングのチャンネルだと間に合う(〜1kHz)
- メモリの圧迫
- 1000秒データの解析に十数GBのメモリが必要(遅延評価が原因)
- 正格評価に出来れば数MBで済むはず
Presentation
Document
- Reference
- [1] C. Rover, LIGO-T1100497 (2011)
[2] C. Rover, Phys. Rev. D 84, (2011) 122004
[3] C. Rover, et. al, Class. Quantum Grav. 28, (2011) 015010