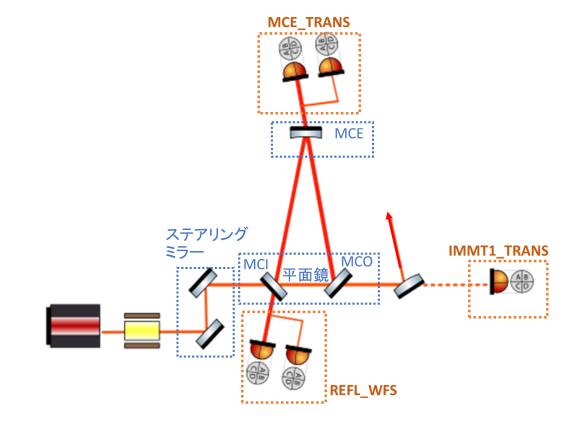
GUI meeting 1021


Chiaki Hirose

角度変化に対しての信号測定

- 鏡(I,O,E,IP2)を0.5Hzで振る。
- WFS: QPDの信号[cts]/Oplev[urad]
- DCQPD(MCE、IMMT1):
- DCQPDの信号[cts]/Oplev[urad]
- →QPDの4つの素子のパワーの

足し合わせで規格化をする→[1/urad]

• **IP2:** WFSのみで測定 ピエゾのスペック値5[µrad]/1[V] を用いて[cts/V]÷[urad/V]→[cts/urad]

オプレブのキャリブレーションファクターが変わったことによりもういちど測り直し

IMCの実測値[PITCH方向]

/kagra/Dropbox/Subsystems/IOO/share/ IMC_ASC/Sensmat/ 210902_TF_ASCQPDvsOPLEV_{MCI,MCE, MCO,IP2}{PIT,YAW}.xml

自由度 /QPD	MCE	МСО	MCI	IP2
WFS1	143.771	127.338	-30.7738	35.4223
WFS2	94.0401	18.3121	22.1291	-15.4948
MCE1	-0.005070	-0.009282	-0.006283	
MCE2	0.0115056	0.003157	0.002295	
IMMT1	-0.01956	-0.001824	-0.007187	

WFS: [cts/urad] DCQPD: [1/urad]

IP: [cts/urad]

IMCの実測値[YAW方向]

WFS: [cts/urad] DCQPD: [1/urad]

IP: [cts/urad]

自由度 /QPD	MCE	MCO	MCI	IP2
WFS1	-319.663	-16.9113	217.525	25.282
WFS2	-45.5905	-161.731	154.096	-5.90202
MCE1	-0.016998	-0.00996093	0.00696	
MCE2	0.01736	-0.00553382	0.00336	
IMMT1	0.013113	-0.02674	0.01006	

IMCの実測値[PITCH方向]

/kagra/Dropbox/Subsystems/IOO/share/ IMC_ASC/Sensmat/ 210902_TF_ASCQPDvsOPLEV_{MCI,MCE, MCO,IP2}{PIT,YAW}_sweep.xml

自由度 /QPD	MCE	MCO	MCI	IP2
WFS1	139.147 143.771	127.187 127.338	-31.4673 -30.7738	41.7853 35.4223
WFS2	93.8715 94.0401	18.8278 18.3121	21.7012 22.1291	-18.5186 -15.4948
MCE1	-0.005137 -0.005070	-0.00964208 -0.009282	-0.006627 -0.006283	
MCE2	0.011903 0.0115056	0.0032756 0.003157	0.00241403 0.002295	
IMMT1	-0.0205162 -0.01956	-0.00192691 -0.001824	-0.00775362 -0.007187	
Frequency	15	15	15	20-100Hz 平均を取る

上段: ホワイトノイズで 振ったときの一番コヒーレンスがある周波数での値 下段: 単一周波数0.5Hz

(3ページ結果)

WFS: [cts/urad]
DCQPD: [1/urad]

IP: [cts/urad]

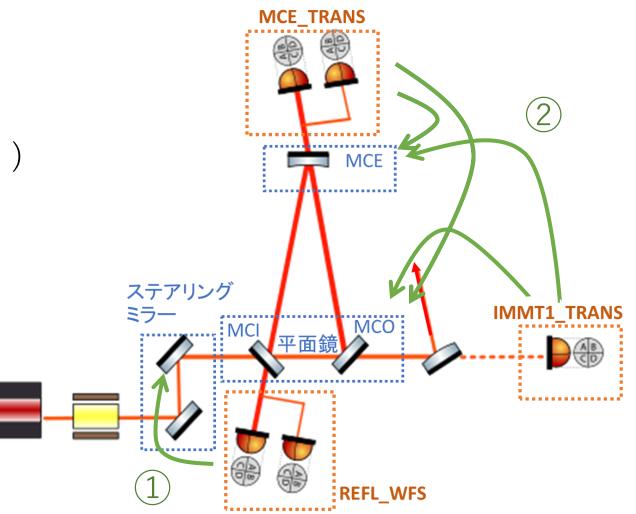
Sweep gauss

IMCの実測値[YAW方向]

WFS: [cts/urad] DCQPD: [1/urad]

IP: [cts/urad]

自由度 /QPD	MCE	MCO	MCI	IP2
WFS1	-312.007 -319.663	-21.0078 -16.9113	215.239 217.525	28.5797 25.282
WFS2	-41.5481 -45.5905	-165.524 -161.731	153.991 154.096	-7.11194 -5.90202
MCE1	-0.0185574 -0.016998	-0.01013 -0.00996093	0.007126 0.00696	
MCE2	0.01849 0.01736	-0.0056 -0.00553382	0.0034215 0.00336	
IMMT1	0.014259 0.013113	-0.0274705 -0.02674	0.0105111 0.01006	
Frequency	18	2	2	20-100Hz 平均を取る コヒーレンス 0.8346


上段: ホワイトノイズで振ったときの一番コヒーレンスがある周波数での値下段: 単一周波数0.5Hz

(4ページ結果)

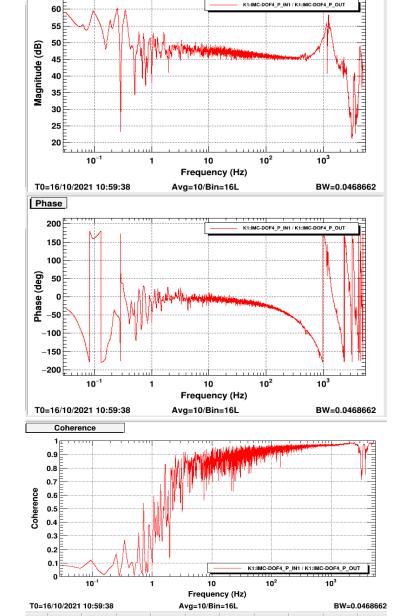
制御計画

①WFS→IPに返す。 (PSLルームの大気擾乱の影響を抑える。)

②MCE_TRANS、IMMT1_TRANS →MCE、I、Oに返す。

WFS→IPに返すセンサー

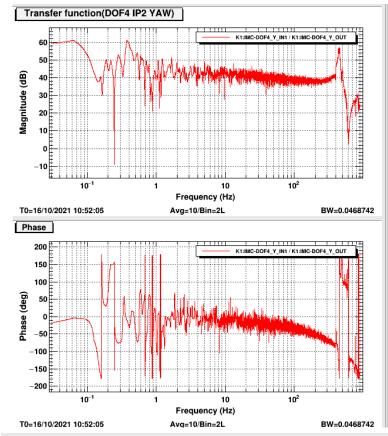
自由度 /QPD	MCE	MCO	MCI	IP2
WFS1_PIT	143.771	127.338	-30.7738	35.4223
WFS2_PIT	94.0401	18.3121	22.1291	-15.4948
WFS1_YAW	-319.663	-16.9113	217.525	25.282
WFS2_YAW	-45.5905	-161.731	154.096	-5.90202

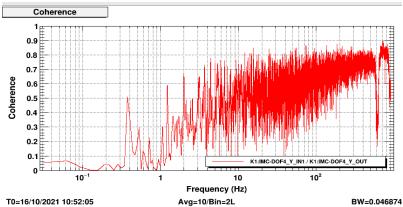

Data: 3-4ページから

2つ(WFS1,WFS2)比べて、 WFS1のほうが大きいので WFS1→IP2に返す

プラント測定(IP2)

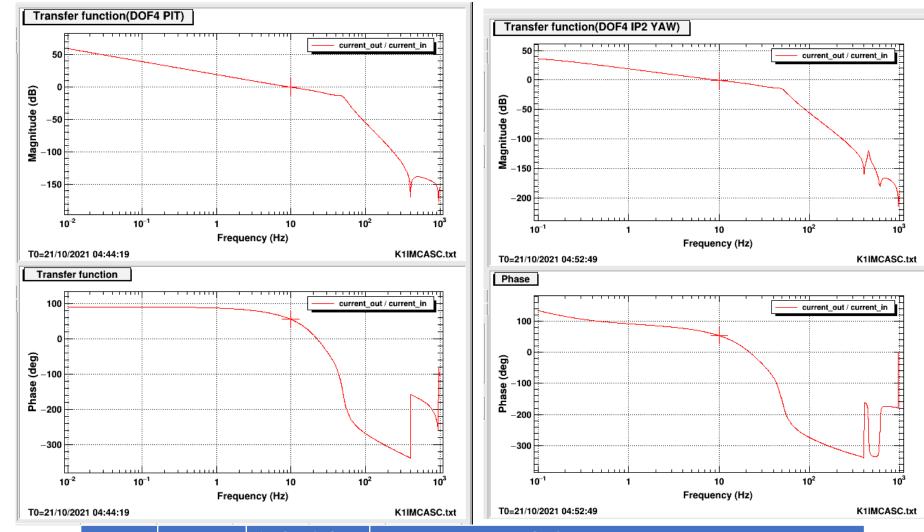
Transfer function(DOF4 IP2 PIT)


PITCH

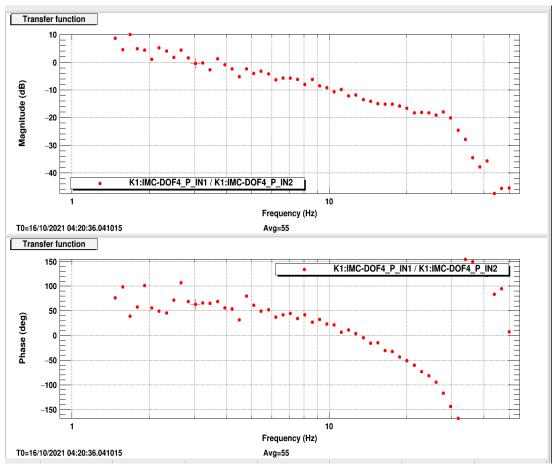


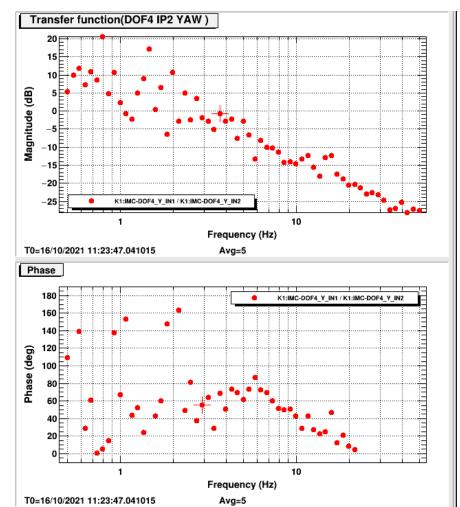
/kagra/Dropbox/Subsystems/IOO/share/IMC_ASC /TF_sup/PLANT/

YAW


PLANT_IP2_WFS1_{PIT,YAW}.xml

フィルター作る


PITCH(左) YAW (右) →



	U.G.F	位相余裕	フィルターの中身
PIT	10Hz	54deg	Pole0.1Hz+(gain-7dB)+gain(-1) +elp50Hz +pole0zero0.1(ブースト)
YAW	10Hz	53deg	Pole0.1Hz+gain(-1) +elp50Hz +pole0zero0.1(ブースト)

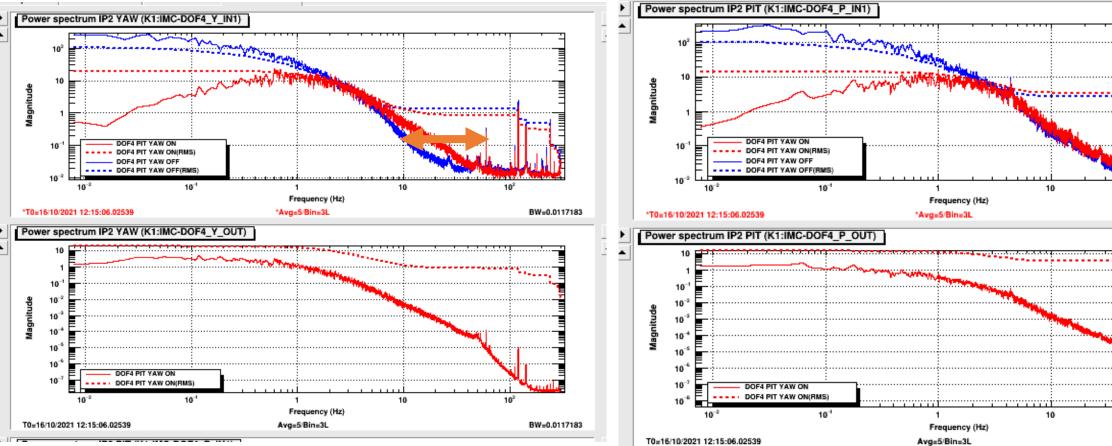
オープンループン伝達関数測定

PITCH(左) YAW (右) →

測定	U.G.F	位相余裕
PIT	3Hz付近	63deg
YAW	3Hz付近	55deg

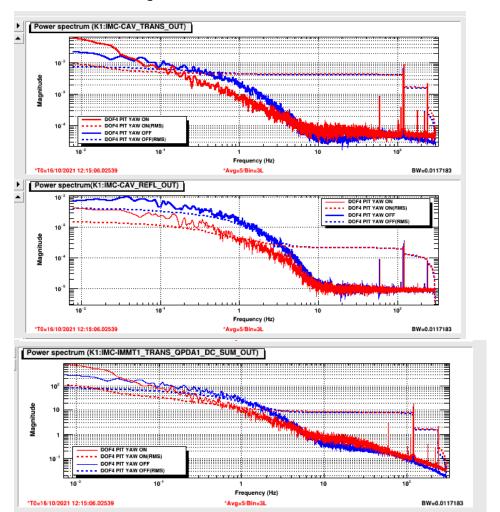
/kagra/Dropbox/Subsystems/IOO/share/IMC_ASC /OLT/OLT_DOF4_{PIT,YAW}.xml

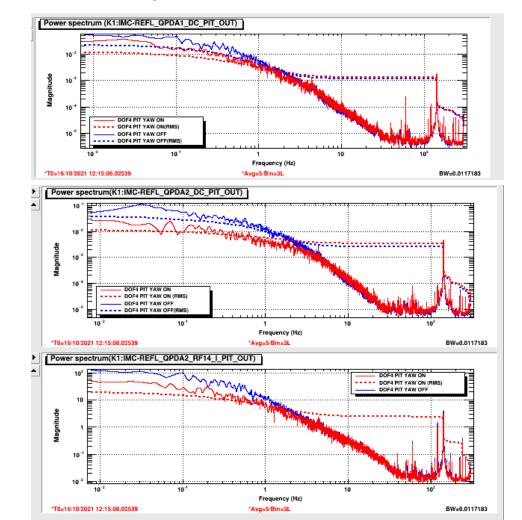
←設計のUGF10Hzに対して測定だと3Hzになる。


ONすると、パワースペクトルが下がり、 大気擾乱のノイズが減る

YAWのON,OFFしたとき エラー信号 フィードバック信号↓ IP2の10~30Hzでは デジタルノイズか。 ホワイトニングが 必要かどうか。

BW=0.0117183


BW=0.0117183


制御したのちのパワースペクトル ON→赤、OFF→青 Dropbox/Subsystems/IOO/share/IMC_ASC/OLT /spec_DOF4_PITYAW_ONOFF.xml

ONすると、パワースペクトルが下がり、 大気擾乱のノイズが減る

> 共振器透過光 共振器反射光 IMMT1_QPD1_DCSUM↓

REFL_QPD1_DC_PIT REFL_QPD2_DC_PIT REFL_QPD2_RF_PIT↓

問題

- ・設計のUGF10Hzに対して測定だと3Hzになる。
- IP2の10~30Hzではデジタルノイズか ホワイトニングが必要かどうか。