PEM status

PEM expand meeting 2019/06/11 T.Yokozawa

Physical Environmental Monitors

Last PEM expand meeting

2018/12/17

- PEM insthllation(Yokozawa 10min) <->
 pdf
- PEM activities1 (Kaihotsu, Mori 10min)
- PEM activities 2 (TTanaka 10min)
- PEM activities 3 (Miyo 10min) [下の"Comment"を見てください]
- PEM activities 4 (Yamakoh 10min)
- Commissioning (Enomoto 10min)
- Summary page 1 (Kokeyama 10min)
- Summary page 2 (Yuzurihara 10min) pdf
- Useful tools (TYamamoto 10min)
- LLO report (Yokozawa 10min)
- Suggestion from bKAGRA phase1 PEM team(Nagano 10min)
- Future prospect+discussion(Yokozawa+ 10min)

2nd PEM expand meeting

2019/06/11

=== Agenda ===

- PEM status (Yokozawa) (10min)
- Virgo PEM measurements (Yokozawa) (10min)
- Characterization of the EXC chamber (Washimi) (10min)
- Power supply monitors (Washimi) (10min)
- Acoustic and magnetic field measurement (Kaihotsu) (10min)
- Current PEM measurements (Mori) (10min)
- Ground motion (Miyo) (10min)
- Sound injection (TTanaka) (10min)
- PEM injection plan (TTanaka) (10min)
- Kozapy+ (Kozakai) (20min)
- Report from DetChar (Yamamoto, Kokeyama) (10min)
- Summary and future prospect (Yokozawa) (10min)

History of the PEM activities

5

6

)3

- 12 1st expand meeting, introduce the github, Morihotsu PEM map
- Washimi-san became KAGRA member, Miyo-san married, PEM channel names changed
- 2 Magnetic field measurements around the cryo chambers, KIW5 meeting
- **3** Kozapy project started, JPS meeting, seismon discussion, PEM injection
- **4** Power supply monitors, RF issue, ondotori monitor upgarade, F2F meeting
 - PEM install2, Virgo PEM team staying, PEM spread sheet, PEM webpage KIW6, 1st engineering run

9

Virgo PEM measurements

PEM expand meeting 2019/06/11 T.Yokozawa

PEM measurements with Virgo team

Virgo team

•

•

•

- Federico Paoletti and Irene Fiori (help Eleonora Polini)
- 12th May 21st May

Main measurements

- · Sound decay measurements
 - IYC chamber measurements
- · Comparison with Virgo and KAGRA PEMs

Seminar about the Virgo PEM

The results will be discussed continuously (Every one month)

Sound decay measurement

(1) Inject the white sound from the KAGRA speaker
(2) Measure the decay time by the Virgo microphone
R60(decay time to -60dB) is useful unit for this measurement
The detail is written in http://klog.icrr.u-tokyo.ac.jp/osl/?r=8920

Washimi-san plans to take advanced data

- Significant injection source with various position

IYC chamber measurement

Data taking at the IYC area :

(1) Set a Virgo accelerometers to the chamber and cooler

- (2) Set a KAGRA magnetometer
 - Coupling function between cooler and PEMs

The detail is written in http://klog.icrr.u-tokyo.ac.jp/osl/?r=8919

Washimi-san did the additional measurement by KAGRA accelerometer

Comparison with Virgo KAGRA PEMs

The detail is written in http://klog.icrr.u-tokyo.ac.jp/osl/?r=8923

10³

10⁻¹⁶

10'1

10⁰

10¹

10²

Hz

10-14

10

10¹

10²

Hz

 10^{3}

During the Virgo team visiting

Many channels changed to 16kHz sampling(usually 2kHz)

K1:PEM-SENSOR_SR_RACK_IX0_22 Virgo Microphone

K1:PEM-SENSOR_IYC_RACK_IY0_(20/21) Virgo Accelerometer

Thank you very much for your co-operation!

•

•

•

Lock status

K1 Guardian LSC_LOCK state

Lock status

calibrated frequency noise

Transmitted light intensity

Temperature/Humidity

Temperature/Humidity

PSL PEMs

PSL PEMs

PSL TEAC Accelerometers amplitude time series

PSL PEMs

PSL PMC REFL DC time series

PSL PMC MIXER MON time series

PSL PMC PZT HV MON time series

IMC PEMs

IFO refl / TMSX PEMs

IX TM temp

EX TM temp

Summary and future work

- (Very) basic plots for the important channels
 - Only time series
 - Duty cycle from the guardian
- Next step (before chief meeting next week)
 - Add the plots for the control and suspension
 - Spectrogram
 - (If possible) glitch and line

Backups

PSL room

Control Diagram

Piezo actuator Heater 6 5 (thermal actuator) Important channels (DQ) **Channel Name** Physical meaning (1)1 K1:PSL-PMC_CAV_REFL_DC_OUT_DQ Power at the reflection port Laser 2 2 K1:PSL-PMC_CAV_TRANS_DV_OUT_DQ Power at the transmitting port K1:PSL-PMC_MIXER_MON_OUT_DQ Error signal of the PMC cavity **RF Photo** 3 Detector (RFPD) 4 K1:PSL-PMC_PZT_HV_MON_OUT_DQ Control signal K1:PSL-PMC_SLOW_MON_OUT_DQ Slow feedback signal 5 K1:PSL-PMC_PZT_SLOW_MON_OUT_DQ Local oscillator demodulator 6 K1:PSL-PMC_PZT_FAST_MON_OUT_DQ Fast feedback signal (LO) K1:PSL-PMC_FAST_MON_OUT_DQ K1:PSL-PMC_TEMP_OUT_DQ Feedback signal for the temperature loop 7 Control (slowest control) Servo * They are all "unsafe" each other 3 (4) **Control Signal** Error signal SEIS_MCF 20m away SEIS_MCE Thermo 5m away ACC PERI2 **Optical Table** MIC1 ACC1 ACC_PERI1 ACC3 ACC2 Therm (field) Therm JGW-T1909984 Outside of room (booth)