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Introduction

* Focus of the paper:

We used the 1-year long data sample to understand the behavior of the Virgo interferometer under
different environmental conditions. Whenever possible, we identified relevant quantities which evidenced
critical behaviors, and we described action plans to improve the detector performance.

* Topics:
= Anthropogenic noise
= Wind

= Sea microseism
» Earthquakes

= Cosmic muons
®  Lightning’s

" Lock losses



1)

The Virgo site noise environment during O3



Virgo O3 environmental monitoring
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Noise statistics: micro-seism
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Figure 4: Evolution during O3 of seismic RMS in the 0.1 to 1 Hz frequency band. Data

colored in yellow and red exceed the 75" and 90%" percentile, respectively.
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Figure 5: Cumulative distribution of microseism in the frequency band 0.1-1 Hz

(dominated by sea activity), measured at EGO during each season in 2019-2020.



Noise variability - daily modulations: seism and magnetic

20% reduction during COVID lockdown (reduced traffic)
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Figure 6: Average evolution on a weekly basis of the seismic anthropogenic noise

Number of days since Monday 00:00 LT

(frequency band: 1-5 Hz) measured at EGO during different times in 2019-2020.
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Figure 25: Weekly averaged magnetic field band-limited RMS values computed in two
frequency bands: 1 to 6 Hz (dashed) and 18 to 24 Hz (solid). Magnetic field intensity
is measured externally of Virgo experimental buildings, in the reference period between
December 2019 and February 2020 (blue curves) and in the period between March 15
and May 15 (red curves) which corresponds to reduced anthropogenic activity within
and outside of EGO because of the COVID-19 pandemics.



2)

Correlations between environmental noise and ITF



BNS range modulation

EE—————
*  BNSrange changed often because of different reasons, besides environmental effects (e.g. changes in
control accuracy)

*  One way to averaging out occasional changes and evidence persistent recurring effects is looking at BNS
range fluctuations around its daily median level. Here shown on a weekly timescale, averaged over O3.

*  Daily modulation with deeps at midnights and reduced in weekends, resembles anthropogenic noise from

trafflc' Virgo 03 run: 2019/04/01 -> 2020/03/27
= Median profile (bin width: 3600 s) - Average deviation from daily median BNS range
Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Y Mon Tue Wed Thu Fri Sat Sun
~1Mpc

{4 Average variation of BNS range around
= . :f' its daily median, computed over one
- week baseline

BNS range, daily median subtracted [Mpc]
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Impact of sea activity on sensitivity

*  Hrec noise level was known to worsen during high microseism, particularly up to = 40 Hz.
*  We show and quantify this correlation.

*  Asimilar correlation is demonstrated between microseism and rate of short noise transients (glitches).
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Microseism glitches are due to scattered light

The non-stationary (glitch) noise during high-microseism conditions shows characteristic scattered light
arches. Arch spacing (= 3s) matches microseism peak frequency.

Most of the time, the noise arches are explained by the relative velocity of the West End Suspended
Bench with respect to the TM.

Typically the SWEB moved much more than the West End Mirror (Paolo Ruggi - VIR-0008A-21).

An issue in SWEB suspension mechanics and control was identified and cured after O3.
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3)

Quantify robustness of ITF against the environment
(bad-weather = wind and sea-activity)



Duty cycle during bad-weather

During bad weather it was usually
more difficult to keep the lock.

In bad weather, high wind and rough
sea often are present together

In order to disentangle which one
(wind or sea) was more critical for ITF
stability we relied on statistics.

In the selected low wind sample (wind
speed < 25 km/h) the duty cycle does
not degrade significantly when
microseism increases.

We conclude that Virgo lock was
robust against microseism
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Influence of wind on BNS range

Virgo O3 run: 2019/04/01 -> 2020/03/27

Virgo sensitivity during O3 was known

to worsen during “bad weather”

periods, which often imply both high

winds and intense sea activity.

In order to quantify the impact of
instantaneous wind speed on the
sensitivity, the same quantity (BNS
range deviation from daily average) is
plotted as a function of average wind
speed.

Sensitivity is unaffected until wind
speeds of

For wind speeds of 50 km/h, 5 Mp
(10%) are lost.
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Wind speed [km/h]

BNS range, daily median subtracted [Mpc]

Average variation of BNS range from its daily median,
as function of wind speed.



Wind is responsible for lock losses

The higher the wind speed the larger the Cumulative distribution of Max DARM correction
correction force (Volts) required to keep the versus wind speed

lock. Close to 10 V the marionette actuators

saturate and the lock is lost. | Virgo 03 run: 30 s time window to compute mean wind speed

—> Lock-losses occur because of saturation 1°°§ \ \\\NM :
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4)

Earthquakes, Lightnings and Cosmic muons



Earthquakes during O3

Early warning software Seismon (by LIGO) was installed and operated during O3

Seismon distributes EQ alerts (time, epicenter, magnitude) it receives from USGS and estimates P
and S waves arrival time at Virgo.
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Earthquakes during O3

82°N

Seismon works well for distant
earthquakes, not so much for
closer EQ (ltaly and
mediterranean)

52°N

Plan is to improve by

integrating in Seismon alerts 22°N
from INGV (ltalian institute of
Geophysics) which has better
coverage of this area. 38°s
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Impact of lightning strikes

Magnetometer in CEB
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Cosmic muons

One telescope for cosmic muons was installed in CEB and
operated for 14 days during O3

Seven GW alerts occurred during this period (4 public).
Found no statistical evidence of an excess of muons in
correspondence of these events.

The muon rate and the glitch rate are both correlated with
the environment (mainly atmospheric pressure) but that
there is no causation identified between the two.
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Figure 2: Data time series in time intervals of 1000 zeconds= (a) Muon rate is calculated as the meanvalueat ime t0 +/- 500 = (b)
Pressure and (¢) Tem perature both measured at ground level. The quantities plotted here are explained in the top of each diagram.



