

VK PEM meeting

22/09/22

•

Takaaki Yokozawa

22

- See detail in J.Yokoyama-san's slide in LVK meeting
 - https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=14410
- Vacuum and pumping down
 - X end
 - Because both Xarm and TMSX area pumping down (~1e-6 Pa), we started the both duct and radiation shield cooling.
 - Temperature of test mass is about 83 K
 - Characterize the resonant frequency, TF, and so on
 - X front
 - Only duct shield cooling (~250 K)
 - ADC glitch noise, oplev glitch noise investigation
 - Y end
 - No cooling, investigation of the TMSY pumping down
 - Y front
 - Only duct shield cooling (~250 K)

- FPMI lock succeeded
 - ALS DARM lock with appropriate filter for mass lock (Using TM, IM and MN)
 - Hand over from green to IR stable
 - We will start the investigation of the noise source
 - And we will start the PRFPMI lock trial
- OMC
 - Fixing the PD, power budget and beam profile measurement
- New high power laser
 - Already installed, trial to take over from old laser source
- Intensity stabilization system
 - Now studying at the site ongoing

- All planned mid-size baffles were installed
- All planned new optical lever were installed
- SRM mirror replaced to 0% reflection one
 - No RSE but improved the shot noise

5

Status of KAGRA PEM

The 29th KAGRA F2F meeting in hybrid style 2022/08/01Session 04 SEO(1) Takaaki Yokozawa (ICRR)

- Toward the O4, several PEMs are re-installed (including re-cabling)
 - AMP Boxes for portable PEM
 - New medm screen
 - PEM Map for O4 (preparing)
- Need the help to evaluate the sensor ex. for Rapid Response Team

01 K1:PEH- 02 K1:PEM-	ACC_PSL_TABLE_PSL1_Y ACC_PSL_TABLE_PSL2_X	\$1806520 : TEAC710 - TEAC AMP \$1806521 : TEAC710 - TEAC AMP		2,235e-0 -4,522e-0	©FilterBank ©FilterBank	- 명3) - 명3
03 K1:PEH- 04 K1:PEM-	ACC_PSL_TABLE_PSL3_Z PORTABLE_PSL_BOOTH_PSL_ENC4	\$1808522 : TEAC710 + TEAC AMP	> 	2,969e-0 0,000e+0	©FilterBank ©FilterBank	ලා: ලා:
05 K1:PEM-	ACC_PSL_PERI_PSL1_Y	\$1707226 : KISTLER 864085 (No	ot Located)	0,000e+0	QFilterBark	- QD
. 06 K1:PEH-	ACC_PSL_PERI_PSL2_X	\$1707225 : KISTLAR 8640A5		-1.218e-0	©FilterBank	PD
07 K1:PEM-	ACC_PSL_PORTABLE_1	\$1707223 : KISTLAR 8640A5		0,000e+0	DFilterBank	망
08 K1:PEH-	ACC_PSL_PORTABLE_2	\$1707224 : KISTLAR 8640A5		0,000e+0	₽FilterBank	91
09 K1:PEH-	MIC_PSL_TABLE_PSL1_Z	B&K Hicrophone 51808142		-1.972e-0	■FilterBank	B
10 K1:PEM-	NIC_PSL_TABLE_PSL2_Z	BiK Microphone 51808974		-9,005e-0	DFilterBank	먼
11 K1:PEH-	MIC_PSL_TABLE_PSL3_Z	B&K Microphone S1808976		-4,753e-0	₽FilterBank	먼
12 K1:PEM-	PORTABLE_PSL_BOOTH_PSL_BNC12			0,000e+0	GFilterBank	망
13 K1:PEM-	ACC_MCF_TRELE_IMCREFL_Z	51809326 : TEAC710		6,260e-0	©FilterBank	Q.
14 K1:PEH-	NIC_MCF_TABLE_IMCREFL_Z	S2011966 : ACO 4152N		6,034e-0	⊡FilterBank	9
15 K1:PEM-	NIC_MCF_BOOTH_IMCREFL_Z	52112692 ACO 4152NHA		8,114e-0	QFilterBank	Q
16 K1:PEH-	PORTABLE_MCF_BOOTH_IMCREFL_BNC4			0,000e+0	₽FilterBank	면:
17 K1:PEH-	ACC_MCE_TABLE_INCTRANS_Z	\$1809327 : TEAC710		-9,877e-0	⊡FilterBank	B
18 K1:PEM-	NIC_MCE_TRBLE_IMCTRANS_Z	S2011967 : ACO 4152N		5,769e-0	©FilterBank	Q
19 K1:PEH-	PORTABLE_HCE_BOOTH_IMCTRANS_BNC3			0,000e+0	₽ FilterBank	Ð
20 K1:PEM-	PORTABLE_MCE_BOOTH_IMCTRANS_BNC4			0,000e+0	©FilterBank	Q
21 K1:PEM-	ACC_PR_TABLE_REFL_Z	\$1809328 ; TEAC710		-9,781e-0	©FilterBank	l Di
22 K1:PEH-	NIC_PR_TABLE_REFL_Z	\$1809035 : AC07146/4152		-9,662e-0	- ©FilterBank	9
23 K1:PEM-	NIC_PR_BOOTH_REFL_Z	\$21011965 ACO 4152N		-1.876e-0	©FilterBank	Q:
24 K1:PEH-	PORTABLE_PR_BOOTH_REFL_BNC4	\$21113437 : TEAC710		-1,041e-0	⊡FilterBank	먼
25 K1:PEM-	ACC_PR_TABLE_ISS_Z	not yet		0,000e+0	©FilterBank	D:
26 K1:PEM-	MIC_PR_TABLE_ISS_Z	not get		0,0006+0	©FilterBank	9
27 K1:PEH-	PORTABLE_FR_BOOTH_PRM_BNC3	TEAC710 S2113441		0,000e+0	©FilterBank	먼
28 K1:PEM-	PORTABLE_PR_BOOTH_PRM_BNC4	TEAC710 S2113438		-0,000e+0	©FilterBank	Q.
29 K1;PEM-	SEIS_HCF_GND_X	QController				
30 K1:PEM-	SEIS_MCF_GND_Y	9Controller				
31. K1 • PEM-	SETS HEE CND 7	QController				

N-PORTABLE_IYC_RACK_IYO_ADCO_DSUB1		0,000±+00	Q FilterBank	CHDISP
N-PORTABLE_1YC_RACK_1Y0_ADC0_DSUB2		0,000#+03	D FilterBank	GUISP
N-PORTABLE_1YC_RACK_IYO_ADCO_DSUB3		0,0008+00	Q:FilterBank	ChDISP
N-PORTABLE_IVC_RACK_IVO_ADDO_DSUB4		0,000e+03	DFilterBank	- BUISP
N-PORTABLE_IVC_RACK_IVO_ADCO_DSUBS		0,000e+00	ChFilterBank	- CHILSP
N-PORTABLE IVC RACK IVO ADCO DSUBS		0,000±+00	QFilterBank	CHDISP
N-PORTABLE_IVC_RACK_IVO_ABCO_DSUB7		0,000±+00	QbFilterBank	CHDISP
N-PORTABLE_IYC_RACK_IYO_ADCO_DSUB8		0.000±+00	DFilterBank	GDISP
N-ACC BS TABLE FOR 7	\$2011546 · TE90710	1,700=-02	DEiltonBank	
N-MIC BS TABLE POP Z	51809037 ± 4CD4157N	1.972e-01	DFilterBark	L DHILES
N-PORTABLE BS BOOTH POP BNC3	Using by HIF group	2,802±+01	DFilterBank	ChITISP
N-PORTABLE_BS_BOOTH_POP_BNC4	Using by MIF group	-2,976e+00	QFilterBank	BUISE
N-OCC BS TOBLE FOS 7	20141547 + TEVE 740	-3.482a-04	Diff () ton Paul	
N-HIC BS TORIE POS 7	S1509032 + 0017146N/4152	-2.729e-03	DE iterbark	CPUTCH
N-PORTABLE_FOS_E		6.811=-04	OF ilterBark	CPUICE
N-PORTABLE_BS_BOOTH_POS_BNC4		-6.849c-04	QF11terBank	QDISP QDISP
N-HIC BC ETELT DC 7	5131/0222 + ACC / IEAN	-5.057+-03	Diffe lang Bard	[marca]
N-H1C_B5_F1ELD_B5_2	01010200 + 0C04152N	-2.935=-03	QF11terBank	
N-ROTAR E RE ROOM RE BNCZ	11310223 ; HUH1321	0.000++01	QF11terbank DE11terBank	CPUTOP
N-PORTABLE BS BOOTH ES ENC4		0,000=+00	QFilterBank DFilterBank	- Chillippe
N-MIC_SR_BOOTH_SR_Z	52011424 ; HCO 4512N	2,6639-02	QFilterBank	QDISP
N-PURTABLE_SR_BUUTH_SR_BNC2		0,000+00	D FilterBank	ENDISP
N-PORTHELE_SR_BOOTH_SR_ENCS		0,000-100	Q:FilterBank	QUISP
N-PUKTABLE_SK_BUUTH_SK_BNC4		0,0009403	P :FilterBank	PADISP
N-ACC_ONC_TABLE_AS_Z	\$2113436 : TEAC710	-4,679e-03	型FilterBank	GUISP
N-MIC_OMC_TABLE_AS_Z	\$2011969 : AC04152N	6.784e-01	몃FilterBank	GDISP
N-HIC_OHC_BOOTH_OHC_Z	\$2011968 : AC041524	7,503e-01	DFilterBank	BUISP
N-PORTABLE_OMC_BOOTH_ONC_BNC4		0.000e+00	©FilterBank	QUISP
N-HAG_IYO_PORTABLE_X		0.000c+00	₽FilterBank	- GADISP
N-MAG_IYO_PORTABLE_Y		0,000e+00	DFilterBank	BUISP
N-MAG_1YO_PORTABLE_Z		0.000e+00	D FilterBank	CPDIRE

IYO ADCO

7

- Many environmental evaluation work were done
 - Easy setting the portable PEMs (ACC, MIC, …)
 - Checking the vibration from the grooving work
 - Judge this work is safe to interferometer or not
 - Eigen frequency check before closing the chamber
 - Photon calibration, Yagura, optical table, \cdots

Hammering test

- Water fluid monitor at the Yend
 - Checked the relationship between weather station and water fluid
 - One of the important topic to understand the underground waters

Y-end

X-en/

- Newtonian noise evaluation from water
 - Now simulation is ongoing
 - More realistic water path
 - T. Suzuki(TITECH) future

茂

住

- Microseismic from ocean wave affect to the interferometer
 - Dead time to bKAGRA phase1, O3GK
- Investigate the relationship between KAGRA seismometers and ocean wave
- Ocean wave data is obtained from NOWPHAS for each bays
- See detail in S.Hoshino poster (m05)
 - Seasonal ocean wave change
 - Correlation coefficient
 - Principal component analysis
 - Multiple regression analysis

- From the previous study, the amplitude of Schumann resonance at the underground is larger than at the surface(Typically, 1 pT)
- Beginning of July(7/3-7/9), we measured the magnetic field, focusing near the beam duct
 - Y-30m, X-1500m, X-2440m, CLIO Yarm, …
- See detail in I.Fukunaga poster (m03)
 - New portable magnetometer system
 - Distance from beam duct
 - Direction of magnetic field

Measurement Location

- KAGRA PEM detected several signals from TongaEruption
 - https://gwcenter.icrr.u-tokyo.ac.jp/en/tonga-20220115 (ICRR)
 - <u>https://www.nao.ac.jp/en/news/topics/2022/20220210-gwpo.html</u> (NAOJ)
- Submitted to PTEP
 - https://arxiv.org/abs/2206.14396
- Seismometers
 - Ground motion (p,s)
 - Air pressure wave
- Infrasound sensors, barometers
 - Air pressure wave
- <u>Magnetometer</u>
 - Increasing the amplitude from Schumann resonance

- The detail in JGW14072
 - KAGRA Internal seminar
- Band limited RMS (seismic motion, magnetic field)
- Spectrum analysis
 - With evaluating the sensor noise, calibration
- Transfer function measurement
 - Outside(surface) to underground
 - Velocity of the air pressure wave
 - Center area to X arm
- From this event, we started the rich environment for the infrasound and the air pressure
- See also Takamori-san talk (next talk)

Infrasound analysis

- Set the storeroom outside of the analysis building
 - Reducing the effect of the human activity
 - Talk, door open/close
 - We can detect the sound from dam
- Combination of the barometer and infrasound at the underground
 - We can cover wide frequency range for each area
- Discussion topic
 - Set the infrasound at Atotsu entrance, near the XYend
 - Data logging
 - With weather station and/or temperature monitor
 - Network KAGRA/Niigata/Toyama

- Independent Component Analysis (ICA)
 - Noise subtraction from KAGRA O3GK data using ICA
 - Already presented in previous F2F meeting
 - English correction and submitted to CQG (arXiv 2206.05785)
 - Non-linear noise subtraction study
- Denoising by DeepClean
 - Check the performance by software and hardware injection test
 - 60 Hz noise subtraction using O3GK data
 - See detail in Chia-Jui Chou in oral(Session 08 DAC)
 - See detail in Yi Yang in poster (Poster s05)

- PEM measurement outside of the KAGRA experimental area
 - TAMA
 - Search the 170 Hz noise in Filter Cavity by Hammering test
 - Seismic motion measurement KAGRA and TAMA at the same timing
 - CLIO
 - Set the accelerometer and microphone at CLIO site
 - During the measurement of Schumann resonance

- Discussion with ET collaborators
 - Newtonian noise, infrastructure noise, Schumann resonance, \cdots
 - ILANCE workshop, Bi-monthly meeting, Virgo visiting, \cdots
- Seismic motion analysis
 - Earthquake, human activity, relationship with infrasound, \cdots
- Increasing the weather information
 - Characterize the weather using the weather station
 - Investigate the rail monitor with heavy snow
 - New weather station

Infrastructure noise

- Sound mapping, magnetic field mapping, vibration mapping, \cdots
- Evaluate the effect from KAGRA environment
 - PEM injection, hammering test, global magnetic injection test
 - Contribution to ET and future detectors
- Setting and developing the PEM injection
- Support of the PEM injection at the site
- There were many lightening near the KAGRA site
- etc. etc.

37.5

36.5

•

- Presented the current PEM activities
 - See also the related talks, posters
 - · Poster : S. Hoshino (m05)
 - · Poster : I. Fukunaga (m03)
 - · Oral : A.Takamori (Session 04)
 - · Oral : C.J. Chou (Session 08)
 - Poster : Y.Yang (s05)
 - There are many activities related with PEM, so if you have interested in our activity, please contact us
 - There are also many activities in the commissioning toward O4