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Short Note

Mechanical Transfer Function of a Pendulum Suspended with a Finite-Mass Wire

Norikatsu Mio

Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113
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In free-mass gravitational wave detectors, pendulum suspension is one of the most important parts. In this report, the
mechanical transfer functions are calculated for the pendulum comprised of a wire of uniform density and a point mass
attached to the end of the wire, and their characteristics are discussed in terms of the normal-mode expansion method.
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In free-mass gravitational wave detectors, pendulum
suspension is one of the most important parts, because
its mechanical properties probably dominate the vibra-
tion isolation, the thermal noise and the performance of
the mirror control systems. In particular, the transverse
resonance of the suspension wire due to its finite mass
has a serious effect on these factors."? In this paper, the
mechanical transfer functions of the pendulum are
calculated and their characteristics are discussed in terms

,+f(t)’ @

of the normal-mode expansion method.
Here, the pendulum is treated as a wire of length / and
uniform linear mass density ¢ with a point mass M
attached to the end of the wire. The displacement of the
wire u is determined by
du du 0 F i
—_— )= v=4—],
at? 9z o
and the equation of motion of the end mass is given by
Fu| Fau
ol ezl
where F and f are the tension of the wire and the external
force applied to the mass, respectively. When the force is
f(t)=fo €', the solution of eq. (1) can be expressed as

u(z, t)=Ae“ sin kz (k=%), (3)

because the boundary condition at the suspension point

(z=0) is given by xo(#)=u(0, t)=0. From eq. (2), the

displacement of the mass, x(¢) is presented as
fo e sin kI

Fk cos kI—Mw? sin kI

Thus, the transfer function between the force applied to
the mass and its displacement, H., can be written as

sin (wl/v) 1
wl/v

x(H)=u(l, t)= 4

Hp. ()= - )
(@) M2 [cos (wl] v)— v/ g sin (ol )]
(5)
where w,= vg// and we assume the relation F=Myg. The
frequency of the nth resonance mode is determined by
the formula,

cos (wq!l/v)— (vw,/g) sin (w,!/v)=0. (6)

While the lowest resonance mode (n=0) represents pen-
dular motion (wo= w,), higher ones (n=1) are the violin
modes. The resonant frequency of the nth violin mode
can be approximately given by”
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M
w,=nnw, V; , 0]

where m(=al) is the mass of the wire. The transfer func-
tion between the displacement of the suspension point
and the mass displacement, H, -, is given by"

1
cos (wl/v)—(vw/g) sin (wl/v)

H, ..(w)= ®)
The significant difference between eq. (5) and eq. (8) is
the factor sin (w!/v)/(wl/v) in eq. (5); this factor
becomes very small near the resonances as

1 Vm 9
N (nn) M’ ©)
In the above derivation, however, the behavior of these
functions at the resonances is rather ambiguous, because
the quality factor Q of the resonance is infinite. In order
to account for the loss, the normal-mode expansion
method is very effective and it elucidates the effects of the
higher resonances.
We can define the eigen function of the nth normal
mode by

sin (wa!/v)
wnl/v

(g)=Sn ot (10)
W) = Gn kel
and show the orthogonal condition as?
!
M+6 | wh(@)Wn(2) dz=nmit. an
0

Here, p. is the reduced mass of the nth mode calculated
as

!

p,,,=M+aS wa(z)* dz, (12)
0

according to the general definition of the reduced mass.”
Using eq. (6), we obtain

M I+ 1 W\
k= cos? (ko) \w,) |’

By means of eqgs. (10)-(12), eq. (5) can be expressed as

© 1
He=> ———
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(13)

; (14)

the validity of this expansion was confirmed by a
numerical calculation for several frequencies. The loss of
the wires can be taken into consideration by introducing
a complex spring constant as?
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wi-wi[l+ig,(w)].
As a result, Hy., can be written as
@ 1
Hp.,= Z (15)

n=0 Mn(wﬁll +l¢,,((0)] _wZ) ’

in this model, the Q-value of the resonance is given by
1/én(wy,). To estimate the contribution from the violin
modes, we consider the case that w ~ w, then obtain the
ratio of the magnitude of the nth mode to that of the
fundamental one as Q,M/ p,~ Q.(w,/ w,)*/2. Since the
factor (w,/w,)* will reach an order of 10% it is hard to
find the resonances in Hy.,.
On the other hand, eq. (8) can be written as

© 2 3
Hyr=3" M ;on[1;F1¢n(a»] i
n=0 tn €08 (kpl) wi[1+i¢,(w)] —w
w1 +ige(w)]
" W31 +ige(w)] —
0 — 1\, 42 :
+23 21) wf,[l +1¢,,(w)2] ,
n=1 60,,[1 +l¢,,((0)] —w
where the loss has already been considered. The factor
(—1)" represents the fact that the phase of H, -, is
delayed by 7 at every resonance; in contrast, eq. (14)
shows that the phase delay of H,., does not exceed x.
From eq. (16), one finds that the magnitude of the nth
mode is twice as large as that of the pendulum mode
when w >» w,, but is canceled by the (n—1)th term owing
to the phase delay mentioned above. For the case where
w< w,, this term can be neglected. Therefore, it is not
necessary to consider the contributions from the violin
mode whose resonant frequencies are far from w.
However, when w is in the vicinity of the resonant fre-
quency, the effect due to the resonance may appear even
if Q is on the order of unity.
Finally, the thermal noise of the pendulum is con-
sidered. The noise spectrum of the end mass is written as
© 2
TR AL B L M—
W p=0 I‘rn[(wn_w ) +¢n(w) C()n]
according to the calculation by Saulson.? When
wo<kw<w, eq. (17) is approximated as

(16)
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When w becomes the same order of magnitude of w;, the
second term is not negligible if ¢, is larger than ¢¢. Fur-
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ther, steep peaks appear at the resonances; the maximum
value is proportional to Q,. By the present techniques, it
is not easy to measure the thermal noise in the frequency
range far from the resonance. Therefore, the frequency
dependence of ¢ has been measured by observing the
values of Q of several wire-resonance modes.” It has
been also proposed that the information about ¢ of the
pendulum can be obtained by measuring the phase of the
transfer function Hj., with precision on the order of
107°8.*

Although the effects of the violin modes in H-., are not
large, those in H, -, are rather serious. Since the
resonances and expected signals of gravitational waves
reside in the same frequency range from several hundred
Hz to a few kHz, the peaks due to the resonances are not
preferable. To reduce these effects, w, should be as high
as possible.” Therefore, a wire of low mass density and
high tensile strength is desirable.® So far as the character-
istics of the transfer functions are concerned, low values
of Q, seem to be preferable. While the thermal noise of
the pendulum is considered to be one of the major noise
sources at low frequencies in the full scale in-
terferometer,? the shot noise of the laser light is regarded
as the dominant noise source at the frequency range
where the resonance peaks appear. In such a detector, if
noise due to high-Q resonance emerges beyond the shot
noise level, the electric cooling techniques for a
mechanical resonator’® are likely to be useful in damp-
ing such peaks without increasing the thermal noise.
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