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Consider a pendulum with mass m hanging from a rod of length l. The support point
moves horizontally with a known function R(t) = X(t)̂i + Y (t)̂j. We can use the angle
θ between the vertical and the pendulum rod as a generalized coordinate, the only one
needed to describe the system.

The position vector of the mass m is

r = R + l(sin θ̂i + cos θ̂j)

The velocity is
v = Ṙ + lθ̇(cos θ̂i− sin θ̂j)

The kinetic energy is

T =
1
2
mv2 =

1
2
m(|Ṙ|2 + l2θ̇2 + 2lθ̇(Ẋ cos θ − Ẏ sin θ)

The potential energy is
V = −mg · r = −mg cos θ −mgY

and although time dependent (through Y (t), it is not dissipative, since it doesn’t contain
θ̇.

The Lagrangian is

L = T − V

L(θ, θ̇, t) =
1
2
ml2θ̇2 + mlθ̇(Ẋ(t) cos θ − Ẏ (t) sin θ) +

1
2
m(Ẋ(t)2 + Ẏ (t)2) + mgl cos θ + mgY (t)

Lagrange’s equation is

0 =
d

dt

∂L

∂θ̇
− ∂L

∂θ

=
d

dt

(
ml2θ̇ + ml(Ẋ cos θ − Ẏ sin θ)

)
−

(
mlθ̇(−Ẋ sin θ − Ẏ cos θ)−mgl sin θ

)
= ml2θ̈ + ml(Ẍ cos θ − Ÿ sin θ) + mgl sin θ

= ml2θ̈ + ml(g − Ÿ ) sin θ + mlẌ cos θ

1



We see that the equation of motion is unchanged if R̈ = 0: this is because the support-
would be moving with constant velocity, and thus it is just like setting up the system in
another inertial frame. We also notice that a vertical acceleration of the support point is
like increasing or decreasing the local gravitational acceleration g: this can be recognized
as the relativity principle (imagine Einstein in an elevator).

The energy function is

h = θ̇
∂L

∂θ̇
− L

= θ̇
(
ml2θ̇ + ml(Ẋ cos θ − Ẏ sin θ)

)
−

(
1
2
ml2θ̇2 + mlθ̇(Ẋ cos θ − Ẏ sin θ) +

1
2
mV 2 + mgl cos θ + mgY

)
=

1
2
ml2θ̇2 −mgl cos θ − 1

2
mV 2 −mgY

The first two terms are the usual expression for the energy of a pendulum hanging from
a fixed support (or the energy with respect to a frame moving with the support), but there
are extra terms.

Since the Lagrangian is not homogeneous in the second order with respect to θ̇ (through
the terms θ̇Ẋ, θ̇Ẏ ), the energy function is not equal to the mechanical energy, which we
can calculate:

E = T + V

=
1
2
ml2θ̇2 +

1
2
mV 2 + mlθ̇(Ẋ cos θ − Ẏ sin θ)−mgl cos θ −mgY

= h + mlθ̇(Ẋ cos θ − Ẏ sin θ) + mV 2

We can calculate the time derivative of the energy from this expression:

E =
1
2
ml2θ̇2 +

1
2
mV 2 + mlθ̇(Ẋ cos θ − Ẏ sin θ)−mgl cos θ −mgY

dE

dt
= ml2θ̇θ̈ + mṘ · R̈ + mlθ̈(Ẋ cos θ − Ẏ sin θ) + mlθ̇(Ẍ cos θ − Ÿ sin θ)

−mlθ̇2(Ẋ sin θ + Ẏ cos θ) + mglθ̇ sin θ −mgẎ

= −mlθ̇(Ẍ cos θ − Ÿ sin θ + g sin θ) + mṘ · R̈ + mlθ̈(Ẋ cos θ − Ẏ sin θ) + mlθ̇(Ẍ cos θ − Ÿ sin θ)
−mlθ̇2(Ẋ sin θ + Ẏ cos θ) + mglθ̇ sin θ −mgẎ

= mṘ · R̈ + mlθ̈(Ẋ cos θ − Ẏ sin θ)−mlθ̇2(Ẋ sin θ + Ẏ cos θ)−mgẎ

where we have used Lagrange’s equation −lθ̈ = Ẍ cos θ− Ÿ sin θ+g sin θ to obtain the final
expression.
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Since the Lagrangian depends explicitly on time, we know that the energy function is
not conserved:

dh

dt
= −∂L

∂t
= −mlθ̇(Ẍ cos θ + Ÿ sin θ)−mṘ · R̈−mgẎ

We can also use this result to calculate the rate of change in the mechanical energy:

E = h + mlθ̇(Ẋ cos θ − Ẏ sin θ) + mV 2

dE

dt
=

dh

dt
+

d

dt

(
mlθ̇(Ẋ cos θ − Ẏ sin θ) + mV 2

)
= −mgẎ + mlθ̈(Ẋ cos θ − Ẏ sin θ)−mlθ̇2(Ẋ sin θ + Ẏ cos θ) + mṘ · R̈

which is of course the same expression we had obtained earlier.
Let us look at some particular cases:

• Small angle approximation: θ � 1

The Lagrangian is

L =
1
2
ml2θ̇2 + mlθ̇(Ẋ cos θ − Ẏ sin θ) +

1
2
m(Ẋ2 + Ẏ 2) + mgl cos θ + mgY

≈ 1
2
ml2θ̇2 − 1

2
mglθ2 + mlθ̇(Ẋ − Ẏ θ) +

1
2
mV 2 + mgl

The equation of motion is

d

dt

∂L

∂θ̇
− ∂L

∂θ
= ml2θ̈ + ml(Ẍ − Ÿ θ) + mglθ

0 = lθ̈ + Ẍ + (g − Ÿ )θ

The equation of motion does not necessarily with periodic solutions, unless Ẍ = 0
and Ÿ is constant, in which case the oscillations have a frequency ω2 = (g − Ÿ )/l.
The frequency increases if the motion is accelerated down (in the same direction than
gravity), or lower if the support is accelerated upwards.

The energy is

E = =
1
2
ml2θ̇2 +

1
2
mV 2 + mlθ̇(Ẋ cos θ − Ẏ sin θ)−mgl cos θ −mgY

≈ 1
2
ml2θ̇2 +

1
2
mglθ2 + mlθ̇(Ẋ − Ẏ θ) +

1
2
mV 2 −mgY −mgl

The rate of change in energy is

dE

dt
= −mgẎ + mlθ̈(Ẋ cos θ − Ẏ sin θ)−mlθ̇2(Ẋ sin θ + Ẏ cos θ) + mṘ · R̈

≈ lθ̈Ẋ −mgẎ + mṘ · R̈
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• Uniform horizontal motion: Ẋ = V, Ẏ = 0

This is like a pendulum inside a car moving with uniform velocity on a horizontal
road. The equation of motion is not changed from that of a simple pendulum, but the
energy is not constant. This is because there is a force of the vehicle on the pendulum,
reacting to the motion of the pendulum itself. Small oscillations of the pendulum
have the same frequency ω2 = g/l, and the energy change dE/dt ≈ lV θ̈ = −mgV θ
is also an oscillating function with the same frequency.

• Uniform vertical motion: Ẋ = 0, Ẏ = V

This is like a pendulum moving in an elevator moving with uniform velocity. The
equations of motion are unchanged, but the energy is not constant. Small oscillations
have the same frequency ω2 = g/l, but now dE/dt ≈ −mgV : there is a constant
increase or decrease of energy, depending on whether the support is going up (and
energy is increasing), or down (and energy is decreasing). This can also be interpreted
as the change in gravitational potential energy due to the vertical motion.

• Horizontal periodic motion: X = X0 cos(Ωt), Y = 0

The equation of motion for small oscillations is lθ̈ + gθ = Ω2X0 cos(Ωt). This is a
driven oscillation, and after initial transients, the pendulum will oscillate with the
same frequency Ω as the support point: θ = θ0 cos(Ωt), with amplitude θ0 given by
the equation of motion:

lθ̈ + gθ = Ω2X0 cos(Ωt)
(−lΩ2 + g)θ0 = Ω2X0

θ0 = X0
Ω2

g − lΩ2
=

X0

l

Ω2

ω2
0 − Ω2

with ω2
0 = g/l. The horizontal displacement of the pendulum with respect to the

inertial frame is x = X + lθ. The ratio of amplitude of the horizontal motion of the
pendulum mass, x, to the amplitude of the horizontal motion of the top, X0, is called
the “transfer function” (a function of driving frequency) of the pendulum to support
motion:

F (Ω) =
x

X0
= X0 + lθ0 = X0

(
1 +

Ω2

ω2
0 − Ω2

)
= X0

ω2
0

ω2
0 − Ω2

If driven at low frequencies (Ω2 � g/l), the pendulum will follow the support, with
a small angle θ, ans x ≈ X: the rod is almost vertical (although the maximum
pendulum displacement is larger than the top’s maximum displacement). At driving
frequencies near the natural pendulum frequency, Ω ≈ ω0, the motion will grow very
large: the system is near “resonance”. At driving frequencies higher than ω0, the
pendulum motion is out of phase with respect to the motion of the support, since
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the transfer function is negative, and the maximum pendulum displacement is now
smaller than the top’s maximum displacement. At very high driving frequencies
(Ω � ω0), the limit of the transfer function is zero, and the angular amplitude of
the pendulum motion is X0/l: the pendulum mass stays near the equilibrium point,
while the top moves back and forth.

The energy (for small oscillations) is

E =
1
2
ml2θ̇2 +

1
2
mglθ2 + mlθ̇Ẋ +

1
2
mV 2

=
1
2
ml(lΩ2 + g)θ2

0 cos2(Ωt) + mlΩ2θ0X0 sin2(Ωt) +
1
2
mΩ2X2

0 cos2(Ωt)

=
1
2
mX2

0

(
cos2(Ωt)

(
(Ω2 + ω2

0)
Ω2

ω2
0 − Ω2

+ Ω2

)
+ sin2(Ω2t)Ω2 Ω2

ω2
0 − Ω2

)
and the power absorbed by the system is

dE

dt
= mlV θ̈ + mṘ · R̈

= mlX0θ0Ω2 sinΩt cos Ωt + mX2
0Ω2 sinΩt cos Ωt

=
1
2
mX2

0Ω2

(
Ω2

ω2
0 − Ω2

+ 1
)

sin 2Ωt

=
1
2
mX2

0

Ω2ω2
0

ω2
0 − Ω2

sin 2Ωt

Since dE/dt is periodic with frequency 2Ω, the system absorbs energy during half of
the cycle of the top motion, and “returns” the energy in the other half. Which half is
which depends on the driving frequency being larger or smaller than the pendulum
energy, i.e., the pendulum moving in phase or out of phase with the support. The peak
power is proportional to a factor X2

0ω2
0Ω

2/(ω2
0−Ω2): this is very large near resonance;

small and proportional to X0Ω2 at low driving frequencies; and independent of driving
frequency at large driving frequencies, ∝ X2

0ω2
0.

• Vertical periodic motion: Y = Y0 cos(Ωt), X = 0.

The equation of motion is −lθ̈ = l(g− Ÿ ) sin θ = l(g +Ω2Y0 cos Ωt) sin θ. The motion
of the support adds an oscillating component to the gravitational acceleration. This
is not a driven oscillator like the previous case, because the oscillatory driving force
is vertical but the natural oscillatory pendulum motion is horizontal. If Y0Ω2 � g,
we can use a perturbative approach to find a solution starting with the pendulum
solution; if Y0Ω2 � g, we can also use a perturbative approach to find a solution
starting with the driven pendulum solution.
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The energy is

E =
1
2
ml2θ̇2 +

1
2
mV 2 + mlθ̇(Ẋ cos θ − Ẏ sin θ)−mgl cos θ −mgY

=
1
2
ml2θ̇2 −mgl cos θ +

1
2
mY 2

0 Ω2 cos2 Ωt + mlY0Ωθ̇ sin θ cos Ωt−mgY0 cos Ωt

and the power absorbed is

dE

dt
= −mgẎ + mlθ̈(Ẋ cos θ − Ẏ sin θ)−mlθ̇2(Ẋ sin θ + Ẏ cos θ) + mṘ · R̈

= mgY0Ω sinΩt + mlY0Ωθ̈ sinΩt sin θ + mlY0Ωθ̇2 sinΩt cos θ + mY 2
0 Ω2 sinΩt cos Ωt

= mgY0Ω sinΩt +
1
2
mY 2

0 Ω2 sin 2Ωt + mlY0Ω sinΩt(θ̈ sin θ + θ̇2 cos θ)

• Support point in uniform circular motion

The support will move with X(t) = R sinΩt, Y (t) = R cos Ωt.

L =
1
2
ml2θ̇2 + mlθ̇(Ẋ(t) cos θ − Ẏ (t) sin θ) +

1
2
m(Ẋ(t)2 + Ẏ (t)2) + mgl cos θ + mgY (t)

=
1
2
ml2θ̇2 + mgl cos θ + mlRΩθ̇ cos(Ωt− θ) +

1
2
mR2Ω2 + mgR cos Ωt

Lagrange’s equation is

0 =
d

dt

∂L

∂θ̇
− ∂L

∂θ

= ml2θ̈ + mgl sin θ −mlRΩ2 sin(Ωt− θ)
= ml2θ̈ + ml(g + RΩ2 cos Ωt) sin θ −mlRΩ2 cos θ sinΩt

For small oscillations, we see that there is an oscillating contribution to the restoring
gravitational force, and an oscillatory driving term.

The energy is

E =
1
2
ml2θ̇2 −mgl cos θ + mlRθ̇ sin(Ωt− θ) +

1
2
mR2Ω2 −mgR cos Ωt

and the power absorbed by the system is

dE

dt
= −mgẎ + mlθ̈(Ẋ cos θ − Ẏ sin θ)−mlθ̇2(Ẋ sin θ + Ẏ cos θ) + mṘ · R̈

= mgRΩ sinΩt + mlRθ̈Ω cos(Ωt− θ) + mlRθ̇2Ω sin(Ωt− θ)

6


