
Suspension Model Usage Notes

07/04/11 T. Sekiguchi

Installation

1. Make sure that file “visUtil.nb” and the matching .m file “visUtil.m” are in the parent directories.

2. To export state-space matrices, you need to create subdirectory called “matlab”. Be sure that such

a subdirectory exists in your directory.

Contents

1. A notebook “toy110426.nb” contains definitions of a suspension model, setup and some codes to

output 3D graphics, plot transfer functions, and etc.

2. The notebook is divided into the following sections:

 Description: Description about the model, version history

 Preliminaries: Some setup for the calculation (importing packages, defining a unit system)

 Constant Values: Define mass and MOI of bodies, length of wires, geometric parameters

 Variables: Pick up all the variables that define the model

 Energy Calculation: Calculate potential, kinetic and damping energies

Find Equilibrium Point: Find the local minimum (working point) of the system

Equation of Motions: Differentiate energy terms, create mass, stiffness and damping matrices

Eigen Mode: Calculate the eigenmodes and eigenfrequencies of the system, visualize them

Transfer Function Plot: Plot various transfer functions of the system

State-Space Model: Create state-space matrices and export them in the MATLAB style

* Preliminaries

1. Be sure that there is a code to import the utility package in the parent directory (<<”../

visUtil.m”).

2. MKS unit system is set as a default. If you want to use another unit system, edit the Unite

System subsection.

* Constant Values

1. This section defines mass, MOI, shape of bodies, material, natural length, diameter of wires,

spring constants, working direction of springs (GAS filters), damping coefficient of magnet

dampers, geometric parameters defining orientation and configuration of wires.

2. In the suspension model, wires are considered to be ideal mass-less springs. In this condition,

the bending elasticity of a wire is ignored. To take this into account, the wire length and the

wire break-off are compensated in the subsubsection Effective Bending Point Compensation.

For more details, find the document T010171-00-D (LIGO internal document).

3. The suspension points of a wire are defined in the local coordinate systems of the attached

bodies. Local coordinates for all objects originate at their COM. Be careful that in my model,

the following reference is used:

 X: Transversal, Y: Vertical, Z: Longitudinal (Beam axis)

 Pitch: Rotation around X, Yaw: Rotation around Y, Roll: Rotation around Z.

This is the same as used in Virgo, but is different from the reference normally used by

Japanese (X: Longitudinal, Z: Vertical).

4. In the Body Shape subsection, the appearance of each body is defined. This is not important

for the calculation of eigenmodes or transfer functions, but is used for the 3-D graphics to

visualize eigenmodes of the system. To define the body shape, choose the type of the shape

from zCylinder, Cuboid, OpenCuboid, yCylinder, TruncatedCone, DoubleCylinder, Doughnut,

Circle, and then define the numerical values of the size.

* Variables

1. There are three types of variables: variables, parameters and floats. The lists of variables are

called allvars, allparams and allfloats, respectively.

2. The allvars should be a list of the position and angle variables for all elements of the system

that have mass/MOI associated with them. The allparams should be a list of positions and

angles describing the state of the ground. The allfloats should be a list of positions and

angles of connections where one elastic element is connected directly to another with no mass

element between.

e.g.) Oscillator with two mass-less springs

allvars={x}; allparams={xg}; allfloats={s};

* Energy Calculation

1. To calculate the potential, kinetic and damping energies of the system, lists of bodies, wires,

springs and dampers are to be defined. To know how to define them, read the usage of the

bodylist, wirelist, springlist and damperlist.

2. Potential energy is divided into four parts: wire stretching potential, wire torsional potential,

spring potential, and gravity potential (+ other potential energy if you want). These energy

terms can be obtained by functions such as makewirepot and etc.

3. The wire stretching potential reflects increase of the straight line distance between the end

points.

2

0wirewireS))((
2

1
llkP  x

The user is responsible for supplying value for the elastic constant (kwire) and the natural

length (L0) of the wire at the wirelist.

4. The function b2s provides the system coordinates {xs,ys,zs} for a point at body coordinates

{xb,yb,zb} on the object defined by {x,y,z,pitch,yaw,roll}. As the suspension points of the wires

are defined by the local coordinates of the attached bodies, it is necessary to convert body

coordinates to the system coordinates.

 






























































 



































b

b

b

s

s

s

z

y

x

pitchpitch

pitchpitch

yawyaw

yawyaw

rollroll

rollroll

z

y

x

z

y

x

)cos()sin(0

)sin()cos(0

001

)cos(0)sin(

010

)sin(0)cos(

100

0)cos()sin(

0)sin()cos(

5. The wire torsional potential is calculated by the following equation:

2

T

0

p

wireT
2

1


l

GI
P

,

where Ip is the polar moment of area, G is the shear modulus and θT is the twist of the wire.

6. A spring joins two points on different objects and apply restoring forces on them in 6 DOFs

according to a tensor of elastic constants and a vector of pre-load forces:

















































































Roll

Yaw

Pitch

z

y

x

Roll

Yaw

Pitch

z

y

x

RollYawPitchzyxP preloadspringspring),,,,,(
2

1
fΚ

7. The angular coordinates of bodies {pitch, yaw, roll} are defined as follows:

From these incremental pitch/yaw/roll representation, a differential angular displacement in

the body coordinate is calculated by the following equation:























































































R o l l

Ya w

P i t c h

R o l lYa wP i t c h

R o l l

Ya w

P i t c h

P i t c hYa w

P i t c hP i t c hYa w

P i t c hYa w

R o l l

Ya w

P i t c h

B

B

B

),,(

1)s i n ()s i n (

0)c o s ()s i n ()c o s (

00)c o s ()c o s (

Ω

The kinetic energy about the angular motion of the body is calculated as follows:

 
























Roll

Yaw

Pitch

rollyawpitchrollyawpitchRollYawPitchK

t

t

t

T
ttt),,(),,(angle ΩIΩ

where I is the moment of inertia tensor.

* Find Equilibrium Point

1. Use FindMinimum function to find an equilibrium point of the system. Keep in mind that

FindMinimum is a function to search for a “local” minimum point in a given potential, so that

you need to choose appropriate starting points (initial values) in the Variables section.

2. The user can choose the calculation method and set the maximum number of iteration. To see

how to define them, find the help of the FindMinimum function.

* Equations of Motion

1. Differentiate the potential energy of the system with respect to pairs of coordinates at

equilibrium to create the stiffness matrix matKxx. In a similar way, differentiate the kinetic

energy and damping energy with respect to coordinate velocities to create the mass matrix

matMxx and damping matrix matGxx.

)()()(

DampingKineticPotential ,,

eqeqeq xxji

ij

xxji

ij

xxji

ij
xx

E
G

xx

E
M

xx

E
K



















2. The matrix matKvv is a differentiation of the potential energy with respect to pairs of variable

coordinates. The matrix matKpv is a differentiation of the potential energy with respect to

pairs of parameter coordinates and variable coordinates. In a similar way, matKfv, matKfp,

matKff, matMvv, matMpv and matGvv are defined (f means float coordinates).

3. From these matrices, equations of motion of the system can be written as follows:

    0floatfvgroundpvpvpv

2

vvvvvv

2  xKxKGMxKGM ssss

 As the float coordinates belong to massless bodies, the equations of motion about these

coordinates are

0floatffgroundfpfv  xKxKxK
TT

From these equations, the float coordinates are eliminated and you obtain the following

“effective” spring constant matrices:

    0ground

(eff)

pvpvpv

2(eff)

vvvvvv

2  xKGMxKGM ssss

T

T

fp

1

ffpvpv

(eff)

pv

fv

1

fffvvv

(eff)

vv

KKKKK

KKKKK









* Eigen Mode

1. In this section, we diagonalize the stiffness and mass matrices to obtain the eigenfrequencies

fi and eigenvectors ei of the system. Eigenvalues and eigenvectors of the matrix can be

obtained by the Eigensystem function.

 iii f eeKM
2(e f f)

vv

1

vv)2()(


2. The eigentable fuction generates a table of the eigenmodes like following:

The table is sorted in the increasing numbers of eigenfrequencies. In the “Type” column, main

variables that represent the eigenmode and their amplitudes are marked down.

3. The eigenplot function shows 3D graphics of the eigenmode shape. Put a number that is

marked in the above list (eigentable) and amplitude, then the user can see the shape of the

eigenmode in 3D graphics like as follows:

* Transfer Function Plot

1. There are three types of transfer functions that the user can plot. The tfplot calculates

transfer functions from the ground displacement, to the body’s displacement. The tfplotf

calculates transfer functions from force/torque exerted to the input variables, to the output

variables’ displacement. The tfplota calculates transfer functions from the actuator force to

the body’s displacement. To use the tfplota, the user need to define the actuatorlist.

2. The transfer functions from the ground displacement, to the body’s displacement are

calculated as follows:

   (eff)

pvpvpv

2
1(eff)

vvvvvv

2

ground KGMKGMH 


ssss

groundgroundxHx 

The transfer functions from force exerted to the system, to the body’s displacement are

calculated as follows:

  1(eff)

vvvvvv

2

force



 KGMH ss

fHx force

3. The followings are usage examples of transfer function plots. When using the tfplotf and

tfplota, the input parameters can be a linear combination of the variables.

* State-Space Model

1. For time domain simulation, the state-space formalism is more convenient. We assume a set of

input and output parameters as follows:

 
eq

ground
Output,Input xx

f

x











From the matrices calculated in the Equations of Motion section, the state-space matrices are

calculated as follows:











 

vv

1

vv

(eff)

vv

1

vv GMKM

10
A
















  1

vv

(eff)

pv

1

vv MKM

00
B

 01C 

 00D 

2. Structure damping is approximated by viscous damping, since all the elements of the

state-space matrices must be real and not be frequency dependent. When the imaginary part

of the stiffness matrix is taken into account, the state-space A matrix is written as:

























f2

]Im[
]Re[

(eff)

vv

1

vv

vv

1

vv

(eff)

vv

1

vv

KM
GMKM

10

A

As the state-space matrices should not be frequency dependent, the frequency dependent part

is approximated by a value with a single frequency:

























damping

(eff)

vv

1

vv

vv

1

vv

(eff)

vv

1

vv
2

]Im[
]Re[

f

KM
GMKM

10

A

3. The matlabexport and matlabexportappend functions export the matrices in the format

used in MATLAB.

