Differences between revisions 135 and 141 (spanning 6 versions)
Revision 135 as of 2017-03-21 17:19:53
Size: 3477
Editor: MarkBarton
Comment:
Revision 141 as of 2017-05-12 13:38:40
Size: 3153
Editor: MarkBarton
Comment:
Deletions are marked like this. Additions are marked like this.
Line 6: Line 6:
==== Report for week of 3/13 ==== ==== Past week report ====
Line 8: Line 8:
 * We took a full set of TFs with the BF stationary but the IRM, IM, RM and TM all hanging.
 * We marked peeling or damaged areas on the clean booth floor for Furuta-san.
 * We installed the SF, measuring its weight in the process.
 * We found the crossbars supporting the SF jacks were too high to allow the SF ring to sit on the pillars while also being partially supported by the jacks. (This was an issue with the 3D CAD - the model of the NB-01 jack had a lower minimum height than reality.) We lowered the crossbars by 5 mm and put thicker spacers (12 mm instead of 3 mm) on top of the jacks supporting the SF and everything worked well.
 * We installed newly cleaned L-brackets under the BF and SF.
 * We installed a new-style cable clamp under the SF. (This was easier with the SF on the security structure, so we had not done it earlier.)
 * We installed the SF-BF rod and hex cable clamp.
 * We suspended the BF/IRM/IM/RM/BS section and found it was light, presumably because it had been trimmed according to the Promec measurement of the SF, not Hirata-san's later value.
 * We added extra ballast mass corresponding to the difference and found the BF section floated at a good height.
 * We moved trim mass around on the BF until it hung level, and adjusted the IRM and OSEMs until the IRM-IM EQ stops were well-centered and all the OSEMs were centered laterally and mid-range.
 * We ran 11 extra 20-m in-air cables from the tank towards the rack. (We will need to add 10-m extensions.)
 * We connected most of the cables to the vacuum flanges with screws and anti-feedthrough adapters. (Some remain to be done.)
 * We debugged a 900 Hz ringing in the BF LVDT, which turned out to be because the damping was enabled without appropriate filters or gains.
 * We debugged excess noise in the TM-H3 OSEM, which turned out to be mostly due to a faulty cable. However we worry that some of it may be due to some extensions made of non-vacuum-compatible ribbon cable which we added because the TM-H2 and -H3 OSEM cables are too short.
 * We installed new security structure parts at the RM level.
 * We found all the parts for the lower breadboard suspension, including the blades, blade bases, associated cable clamps etc. We also found the jigs for installing the blades.
 * Fabian finalized the BF ballast mass design and started on the SF.
==== Report for week of 3/21 ====
At Kamioka (Mark, Fabian, Enzo, Perry, Hirata-san):
 * We took a full set of TFs with the SF stationary but the BF, IRM, IM, RM and TM all hanging.
 * We also did a TF from BF LVDT actuation and confirmed that it was working.
 * We got SUMCON running on Perry's computer and worked out how to do cut-down versions of Fabian's full Type-B model corresponding to the various partial configurations we have data for.

 * We counted the used/broken/unused/need cables for Type B.
 * Hirata-san and Mark installed blades in three LBB blade units.
 * Hirata-san checked the LBB blade units to see how badly the blade tips were misaligned. The bases will need to be moved towards the clamp end by 21 mm. It is probably not feasible to turn the screw holes into slots, so an adapter part will need to be designed.
 * We checked that the new in-vacuum geophone cables that Takahashi-san had got for us were the proper new-style ones. (Thus we will need in-air descrambler cables.)
 * Shoda-san sent Enzo a document by Joris on the tuning of the LVDTs, so he stated working through it. He also researched the specifications of all the coils (PI and SF as well as BF.)
 * We found the damper magnets and the template for placing the magnets on the ring for the SF.
 * Hirata-san installed and wired up the PI yaw stepper. The vertical stepper still needs wiring, and the horizontal stepper wiring needs to be made vacuum-compatible.
 * We installed safety bars on the ±X side of the assembly frame about 3 m off the floor, so they are at waist height for a person standing on one of the tall ladders. The one on the +X side will be very good for safety where it is, but the one on the -X side will need re-doing: it is too close and not very securely attached because of interference from vacuum pump cabling.
 * We unlocked the inverted pendulum and experimented with adding weight. It was still stable with 4 layers of arc weights.
 * We also experimented with getting both the IP centered and the security structure vertical (so that the suspension hang centrally within it). We managed to get it all right with a combination of leveling the PI with the jacks and moving the IP with the fishing rods.
 * Adjusting the verticality of the SS had left the bottom of it off-center in the assembly frame, so we picked the entire system up with the crane and moved it in +Y and -X a few mm to re-center it.
 * We started to remove the PI so we could do various adjustments (check the SF LVDT, reconfigure the Cu damper, add the hex cable clamp on the rod and hang the magnet disk for the SF damper) but gave up when the PI-SF jammed in the SF.
Line 34: Line 26:
Week of 3/21:
 * Lots of electronics: BF picos, SF LVDT and stepper, routing of in-vac cabling past SF, in-air cabling for PI.
 * Pick up and weigh entire system from SF down.
 * Prepare PI: reattach LVDT double coils, install FR and magic wand.
 * Prepare LBB blade units.
 * Clear floor for re-coating.

Week of 3/27:
 * f2f Meeting
Week of 5/15:
 * Enzo from Tuesday 5/16 (driving test), rest of team from Monday.
 * Fix PI-SF rod jamming.
 * Remove PI and SF cap.
 * Continue debugging SF LVDT.
 * Reconfigure Cu damper ring on SF.
 * Add magnets to upper SF damper ring.
 * Add cable clamps on the PI (a few places are inaccessible when the PI is on the assembly frame).
 * Reinstall PI, this time with rods and damper ring.
 * Reinstall PI-SF rod, this time with hex cable clamp.
 * Prepare for PR2 bellows removal on 5/15 (move table with tools).
 * Cable/test PI horizontal LVDTs and steppers.
 * Install/cable/test geophones.
 

Scraps of text for incorporation in the VIS Meeting Minutes

KAGRA/Subgroups/VIS/MeetingNAOJ

Type B (Mark)

Past week report

At Kamioka (Mark, Fabian, Enzo, Perry, Hirata-san):

  • We counted the used/broken/unused/need cables for Type B.
  • Hirata-san and Mark installed blades in three LBB blade units.
  • Hirata-san checked the LBB blade units to see how badly the blade tips were misaligned. The bases will need to be moved towards the clamp end by 21 mm. It is probably not feasible to turn the screw holes into slots, so an adapter part will need to be designed.
  • We checked that the new in-vacuum geophone cables that Takahashi-san had got for us were the proper new-style ones. (Thus we will need in-air descrambler cables.)
  • Shoda-san sent Enzo a document by Joris on the tuning of the LVDTs, so he stated working through it. He also researched the specifications of all the coils (PI and SF as well as BF.)
  • We found the damper magnets and the template for placing the magnets on the ring for the SF.
  • Hirata-san installed and wired up the PI yaw stepper. The vertical stepper still needs wiring, and the horizontal stepper wiring needs to be made vacuum-compatible.
  • We installed safety bars on the ±X side of the assembly frame about 3 m off the floor, so they are at waist height for a person standing on one of the tall ladders. The one on the +X side will be very good for safety where it is, but the one on the -X side will need re-doing: it is too close and not very securely attached because of interference from vacuum pump cabling.
  • We unlocked the inverted pendulum and experimented with adding weight. It was still stable with 4 layers of arc weights.
  • We also experimented with getting both the IP centered and the security structure vertical (so that the suspension hang centrally within it). We managed to get it all right with a combination of leveling the PI with the jacks and moving the IP with the fishing rods.
  • Adjusting the verticality of the SS had left the bottom of it off-center in the assembly frame, so we picked the entire system up with the crane and moved it in +Y and -X a few mm to re-center it.
  • We started to remove the PI so we could do various adjustments (check the SF LVDT, reconfigure the Cu damper, add the hex cable clamp on the rod and hang the magnet disk for the SF damper) but gave up when the PI-SF jammed in the SF.

Plan for coming weeks

For more detail, see KAGRA/Subgroups/VIS/TypeB/ToDo.

Week of 5/15:

  • Enzo from Tuesday 5/16 (driving test), rest of team from Monday.
  • Fix PI-SF rod jamming.
  • Remove PI and SF cap.
  • Continue debugging SF LVDT.
  • Reconfigure Cu damper ring on SF.
  • Add magnets to upper SF damper ring.
  • Add cable clamps on the PI (a few places are inaccessible when the PI is on the assembly frame).
  • Reinstall PI, this time with rods and damper ring.
  • Reinstall PI-SF rod, this time with hex cable clamp.
  • Prepare for PR2 bellows removal on 5/15 (move table with tools).
  • Cable/test PI horizontal LVDTs and steppers.
  • Install/cable/test geophones.

KAGRA/Subgroups/VIS/TypeB/Minutes (last edited 2022-10-28 10:02:46 by fabian.arellano)