Differences between revisions 137 and 147 (spanning 10 versions)
Revision 137 as of 2017-04-14 13:36:43
Size: 2522
Editor: MarkBarton
Comment:
Revision 147 as of 2017-05-26 13:29:23
Size: 3633
Editor: MarkBarton
Comment:
Deletions are marked like this. Additions are marked like this.
Line 7: Line 7:
At Kamioka (Mark, Fabian, Enzo, Perry, Hirata-san): At Kamioka (Mark, Fabian, Enzo, Hirata-san):
Line 9: Line 9:
 * Filed crane adapter ring to make it fit better on the hook.
 * Debugged the BF and SF LVDTs (the signal generator had lost its settings in the rack shutdown).
 * Debugged the TM-H4 OSEM problem (a "Type 3 extension cable had gone bad).
 * Weighed eyebolts used to lie the SF.
 * Shipped the old pico driver and joystick back to Mitaka for Eleonora.
 * Borrowed a second pico driver ("PR3") and set it and "BS" up in the rack.
 * Practiced driving the BF cap picos with the new drivers.
 * (With help from Miyo-kun) got the pico MEDM screens running.
 * Replace the temporary "PR3" driver with a new one "BS_BF", and renamed "BS" to "BS_IM".
 * Checked all the DIO connections to the LPCD and connected up the HPCDs. With help from Kokeyama-san we can now see all the drivers from EPICS.
 * Worked on balancing the BF/IRM/IM... section. Sometime during this work, the IM sank and would not come back to its proper position even with the fishing rod. We put a scale under the RM and found that the imbalance was 488 g. Using the fishing rod we got this down to 235 g, but we found that the direction of the stepper was not consistently related to the direction selected on the driver screen - we had previously noted that "left" was "up, but driving "up" the imbalance would decrease to 235 g and then start increasing again, indicating the stepper had bounced off some obstacle. (There was no obvious sound when this happened, unlike at the low end.)
 * We decided to give up on tuning the height of the IM with the fishing rod and to proceed with the test hang by locking the BF keystone at the desired height.
 * Hirata-san installed the PI fishing rod and magic wand, and did more work on changing the PI LVDT connectors from female to male.
 * Enzo made many edits to the circuit diagram, adding the DIO for the HPCDs and correcting minor mistakes.
 * Inspected LLB in tank - in a good position, but not very clean - apparent water spots and dirt.
 * Found the geophone adapter plates.
 * Retested SF FR stepper - still good.
 * Finally got SF LVDT working:
  * Found a short in the primary coil due to Al foil used for mechanical reinforcement at vacuum feedthrough connection.
  * Did a full calibration and found that linear range was too small (0.75 mm!) and did not cover nominal keystone height.
  * Decreased gain to increase linear range.
  * Adjusted the height of the yoke and secondary coil unit to center the linear region around the nominal keystone height.
  * Implemented velocity damping.
 * Found all parts for the LBB and damper rings.
  * Cu segments and some other parts were very dirty - wiped carefully for now, but should be properly cleaned before final install.
  * Outrigger parts for LBB have M16 thread cut directly into Al but should have had M16 helicoils. This is a galling risk with Ag-coated rod receptacles. Hirata-san organized rework.
  * Some special lock nuts are in short supply and are being borrowed from supply at ATC for next batch of BFs.
 * Made remaining two geophone in-air descrambler cables (total three).
 * Installed a thermometer supplied by Kokeyama-san on the tower around the BS tank.
 * Prepared the SF damper.
  * Designed a pattern of magnets for the two-segment arrangement of SF damper and laid it out on the magnet ring with the template.
  * Moved the Cu segments on SF cap by 30° (the cap had not been in the right position earlier).
 * Reinstalled PI:
  * Raised the PI with the crane and hooked the SF damper ring. Some of the rods did not fit the receptacles due to tolerance issue, but by going through a large number of rods and receptacles, we found three working sets.
  * Craned the PI onto the frame and suspended the SF/... section, this time with the hex cable clamp on the F0-SF rod.
  * Tensioned the PI yaw return spring, installed (but did not cable) the yaw stepper and adjusted the yaw of the SF/... section. We worry the return spring is not stiff enough.
  * Installed (but did not cable) the geophones.
  * Recentered the IP. The extra weight from the geophones (≈42 kg) and SF damper ring (≈17 kg) had brought the IP to near the point of instability, so we removed one arc weight (≈17 kg) and rearranged the other two in the top row to be symmetrical.
  * Added ballast to set the height of the F0 keystone. We now have about 6 kg in hand (due to removing one of the Cu segments for the SF damper). This should be enough margin for cables, temperature fluctuations etc.
Line 27: Line 38:
Week of 4/17:
 * Install temporary ballast mass in SF.
 * Lift SF/BF/... section and check total weight and SF balance.
 * Continue swap of PI LVDT connectors (female->male)
 * Start preparing LBB spring units.
Week of 4/24:
 * Crane in PI.
 * Connect SF/BF... section.
 * Temporarily remove PI and adjust SF ballast if necessary.
 
Week of 5/29, 6/6:
 * Cabling:
  * Route BF/... cabling up past SF to PI.
  * Route SF cabling up to PI.
  * Add Type 3 extensions to SF/... cables.
  * Move vacuum flanges to positions on assembly frame more convenient for next stage (accessible from second floor, one on each corner of frame).
  * Move in-air cabling to match flange positions.
  * Cable and test PI vertical LVDT.
  * Calibrate PI vertical LVDT.
  * Set yoke on PI vertical LVDT (if necessary).
  * Cable and test PI yaw stepper.
  * Cable and test PI vertical stepper.
  * Cable and test PI horizontal steppers.
  * Cable and test PI horizontal LVDTs.
  * Calibrate PI horizontal LVDTs.
 * Crane into tank.

Scraps of text for incorporation in the VIS Meeting Minutes

KAGRA/Subgroups/VIS/MeetingNAOJ

Type B (Mark)

Past week report

At Kamioka (Mark, Fabian, Enzo, Hirata-san):

  • Inspected LLB in tank - in a good position, but not very clean - apparent water spots and dirt.
  • Found the geophone adapter plates.
  • Retested SF FR stepper - still good.
  • Finally got SF LVDT working:
    • Found a short in the primary coil due to Al foil used for mechanical reinforcement at vacuum feedthrough connection.
    • Did a full calibration and found that linear range was too small (0.75 mm!) and did not cover nominal keystone height.
    • Decreased gain to increase linear range.
    • Adjusted the height of the yoke and secondary coil unit to center the linear region around the nominal keystone height.
    • Implemented velocity damping.
  • Found all parts for the LBB and damper rings.
    • Cu segments and some other parts were very dirty - wiped carefully for now, but should be properly cleaned before final install.
    • Outrigger parts for LBB have M16 thread cut directly into Al but should have had M16 helicoils. This is a galling risk with Ag-coated rod receptacles. Hirata-san organized rework.
    • Some special lock nuts are in short supply and are being borrowed from supply at ATC for next batch of BFs.
  • Made remaining two geophone in-air descrambler cables (total three).
  • Installed a thermometer supplied by Kokeyama-san on the tower around the BS tank.
  • Prepared the SF damper.
    • Designed a pattern of magnets for the two-segment arrangement of SF damper and laid it out on the magnet ring with the template.
    • Moved the Cu segments on SF cap by 30° (the cap had not been in the right position earlier).
  • Reinstalled PI:
    • Raised the PI with the crane and hooked the SF damper ring. Some of the rods did not fit the receptacles due to tolerance issue, but by going through a large number of rods and receptacles, we found three working sets.
    • Craned the PI onto the frame and suspended the SF/... section, this time with the hex cable clamp on the F0-SF rod.
    • Tensioned the PI yaw return spring, installed (but did not cable) the yaw stepper and adjusted the yaw of the SF/... section. We worry the return spring is not stiff enough.
    • Installed (but did not cable) the geophones.
    • Recentered the IP. The extra weight from the geophones (≈42 kg) and SF damper ring (≈17 kg) had brought the IP to near the point of instability, so we removed one arc weight (≈17 kg) and rearranged the other two in the top row to be symmetrical.
    • Added ballast to set the height of the F0 keystone. We now have about 6 kg in hand (due to removing one of the Cu segments for the SF damper). This should be enough margin for cables, temperature fluctuations etc.

Plan for coming weeks

For more detail, see KAGRA/Subgroups/VIS/TypeB/ToDo.

Week of 5/29, 6/6:

  • Cabling:
    • Route BF/... cabling up past SF to PI.
    • Route SF cabling up to PI.
    • Add Type 3 extensions to SF/... cables.
    • Move vacuum flanges to positions on assembly frame more convenient for next stage (accessible from second floor, one on each corner of frame).
    • Move in-air cabling to match flange positions.
    • Cable and test PI vertical LVDT.
    • Calibrate PI vertical LVDT.
    • Set yoke on PI vertical LVDT (if necessary).
    • Cable and test PI yaw stepper.
    • Cable and test PI vertical stepper.
    • Cable and test PI horizontal steppers.
    • Cable and test PI horizontal LVDTs.
    • Calibrate PI horizontal LVDTs.
  • Crane into tank.

KAGRA/Subgroups/VIS/TypeB/Minutes (last edited 2022-10-28 10:02:46 by fabian.arellano)