Differences between revisions 318 and 385 (spanning 67 versions)
Revision 318 as of 2018-08-31 15:56:09
Size: 4979
Editor: MarkBarton
Comment:
Revision 385 as of 2019-02-01 12:23:41
Size: 7764
Editor: MarkBarton
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
Line 6: Line 5:
==== Report for week of 8/13 ====
 * KAGRA was closed Mon/Tue 8/13-14 due to O-Bon.
 * Enzo and team debugged an issue with height of the SR3 keystone coupling to yaw of the payload as measured by the OL. We suspect a ferromagnetic item on the SF damper, but we're not sure.
==== Report for week of 1/14 ====
 * Etc
 * BS
 * SR2
  * Hirata-san helped with installing the obelisk on the LBB, and added counterweights to get the LBB level and at the right height for the first rough alignment. However the springs were still at or near the top stops, so he later pulled down the LBB with excess mass, locked the blades at the bottom of their range and reset the LBB rods and damping magnet ring, aiming off by 10 mm so that it would be correct when the LBB was allowed to rise. However he left it pressed down for now so that Hirose-san could apply FC. Early next week he will release it and do the final ballasting.
 * SR3
  * Enzo installed IM damping filters.
  * Mark installed a BIO Converter for the stepper remote enable (which will eventually also be used for the WD).
  * Fabian researched buoyancy compensation and pre-applied as much as possible. The total compensation needed is 0.19 mm for F0, 0.48 mm for SF and 0.46 mm for BF, total 1.23 mm.
 * SRM
  * Mirapro helped us with the camera viewport issue by giving us a gasket of the same type but a different brand from their stock, which snapped easily into place. We then installed the viewport on the tank.
  * Fabian calibrated the F0 FR.
Line 10: Line 18:
==== Report for week of 8/20 ====
===== SR3 =====
 * Hatoya-san and Enzo gathered date for a study of yaw mode Q damping time as a study of damper ring height.
===== SR2 =====
 * We continued with cabling work.
 * We configured a second pico driver and connected it.
 * We assembled the LBB damper rings in the tank, craned them to near the top and hooked them. While the tank was open we also set the jacks below the mushroom that will support the suspension to nominal height.
==== Report for week of 1/21 ====
==== BS (top priority) ====
 * Last Friday: We tuned the IP to have a lower frequency. At the begginig we measured 78mHz.
 * Last Friday: With Lucia, we centered the IP and diagonalized the IP. After this process we measured a resonant frequency of 40mHz. We closed the position control loop for the IP.
 * We checked during the weekend and the suspension was not in a healthy state. We checked the IM horizontal OSEM coil driver, and there were some cables in the wrong connectors. (Test in instead of ...)
 * The adapter for the cable of the F0 fishing rod was not healtly. We fixed it but it might be good to replace it.
 * The commissioning team steered the BS IM to reach the Y-end and then Terrence centered the oplev with this orientation (more than once).
 * Fujii-san and Enzo fixed old BS geophones by replacing the Preamp.
 * We replaced the Geophones for the recently fixed ones.
 * Hirata-san and Fabian secured trim masses to the keystone.
 * We installed GAS Filters and IM control loops
 * Currently Terrence and Enzo are centering the IP using the horizontal fishing rods.
Line 18: Line 31:
===== SRM =====
 * We reserved and configured two pico drivers.
 * We checked the prism gluing - all the jigs came away successfully.
 * Fabian assembled the RM.
 * Hirata-san added ballast masses to the IM and we weighed it, as well as the RM and the optic in the mirror box.
 * We suspended the optic and RM.
==== SR2 (priority 2) ====
 * We measured the optic height. According to the measurement it was 0.1 mm off. However, the systematic error is likely larger (laser level, position of reference). Apparently, the RM has a small amount of roll but this should be investigated further. It might just be systemaric error of the measurement. The roll of IM was adjusted to a value close to zero before the measurement.
 * We calibrated the F0 fishing rod stepper motor.
 * We raised suspension using the jacks. We rotated the jacks by 180 degrees roughly.Compensation has to happen with F0, F1 and BF.
 * We removed tape, writing etc on PI and PI items.
 * We removed the trim mass.
 * Terrence restored the OPLEV to the original layout with an 1.1 m collimator and calibrated the tilt sensing QPD. Expect a pitch range of +/-223 urad and a yaw range of +\-322 urad.
 * We centered the IP by using the jacks. L and T came good but there is a large yaw ~ 5 mrad.
 * We diagonalized the IP actuation matrix. We closed the position control loop for the IP. '''(This has not happened yet).'''
 * We installed GAS Filters and IM control loops. '''(This has not happened yet).'''
Line 25: Line 42:
==== Report for week of 8/27 ====
===== SR3 =====
 * We did an inventory of arc weights to see if we had enough for SRM and found that we had only enough for a basic allocation for all of type B (172 kg for BS and 103.2 kg per SR) with almost no spare for tuning.
 * Using SR3, we did a quick study of the IP frequency as a function of the number of arc weights, to see how much more we might need. 3 pairs of small arc weights (10 mm thick, 4.53 kg each) brought the frequency below 0.1 Hz, 4 pairs made it unstable. If SR3 is typical we would need about 27 kg extra per suspension.
 * After the IP study, we left three pairs of 10 mm arc weights installed on the IP and measured the frequencies with the digital system (instead of a stopwatch).
==== SR3 (priority 2) ====
 * The bouyancy correction was calculated. It's 1.3 mm.
 * The strategy is rasing the suspension by 1.3 mm and then moving the keystone by 1.3 mm with the fishing rod so the alignment team can work.
 * We measured the optic height using Terada-san's reference. The SR2 optic was at the correct height.
 * We raised suspension using the jacks by an amount calculated with the jack thread: M42 with 2 mm special thread. We rotated the jacks by approximately 180 degrees.
 * Terrence reinstalled OL LED, collimator (1.1 m) and relaigned the OL. Both QPDs were calibrated and expect a range of L: $\pm$332 $\mu m$, P: $\pm$217 $\mu rad$ and Y: $\pm$306 $\mu rad$.
 * OPLEV diagonalization hasn't been done but we expect minimal coupling due to the OPLEV. Strange couplings (due to the geometry of TM) are expected but no conclusive results yet.
 * We removed tape, writing etc on PI and PI items.
 * We calibrated the F0 FR against the readout of the F0 LVDT. We removed the trim masses (110 g). Then we moved the F0 keystone by 1.3 mm downwards.
 * We centered the IP by adjusting the height of the jacks by small amounts. Longitudinal and Transverse positions came good but there was a large yaw (-5 mrad) when the stepper motors were in mid-range. Currently the yaw is -1 mrad and the steppers are using 80% of their range already.
 * The F0 yaw stepper should, in principle, give plus minus 125 mrad range. We should check with a measurement how good this range is (e.g. cables being pulled, components touching, etc.) We can use the vertical laser level as an oplev or the main interferometer beam
 * The front of the optic was cleaned by Hirose-san with Hirata-san's help. Hirata-san and Fujii-kun released the optic. '''The IP is still locked.'''
 * '''F1 fishing rod is not responsive. We have to check the cables.'''
 * We diagonalized the IP actuation matrix. We closed the position control loop for the IP. '''(This has not happened yet).'''
 * We installed GAS Filters and IM control loops. '''(This has not happened yet).'''
Line 31: Line 58:
===== SR2 =====
 * We finished routing the in-vacuum cables, and connected everything through to the rack for final testing.
 * We brought a basic 103.2 kg set of arc weights (3 large (38 mm) and 6 medium (19 mm)) into the SR2 cleanbooth.
'''Talk about problems turning on and off control systems (Terrence and Enzo)''' From Terrence: Since the PI controller was implemented, the controller keeps accumulator displacements error and converts this error to the output. One problem arose from the mismatch of the control system and the actual hardware. Because the controller output could have a much larger value than the number of counts that can be input to the coil actuators (e.g. the controller says we should input 60000 counts to the actuators but the hardware limits the number of counts), the controller will not function as designed. As a result, the PI would shift to one side (due to insufficient driving force) while the voices coils became saturated at maximum output. Additionally, because the controller is still functioning, the integrator keeps accumulating error and hence the output of the controller keeps increasing but the object is actually stuck. This makes the IP very very unstable when the actuators are saturated.
Line 35: Line 60:
===== SRM =====
 * Panwei calibrated 6 OSEMs to be used on the IM. Two OSEMs have a long-term drift issue and may need repair. He took some long time series to characterize the drift.
 * We brought in all the remaining arc weights from the pallet into the SRM cleanbooth, and Hirata-san cleaned up 1 large arc weight and 3 mediums left over from the BS that complete a basic set of 103.2 kg, plus about 5 kg spare. (However 27 kg of these are on loan to SR3.)
 * We assembled and installed the bottom section of the security structure under the optic and RM.
 * We set up a new OL for setting the pitch. We found the reflection off the AR surface was much weaker than for SR2 and SR3, but fortunately the HR surface is almost flat (ROC≈300 m) so we were able to use the HR reflection instead.
'''Give status of oplevs (Terrence and Enzo).'''
Line 41: Line 62:
==== Plan for week of 9/3 ====
 * Mark, Fabian, Kozu-kun, Panwei at Kamioka Mon-Fri.
 * Enzo at Kamioka Mon-Thu.
 * Hirata-san at Kamioka Tue-Fri.
 * Crane inspection Mon/Wed mornings.
 
===== SR2 (highest priority) =====
 * Connect cables through to rack.
 * Check/tweak alignment of chain.
 * Add arc weights (103 kg) and geophones - check IP.
 * Go/no-go test of electronics.
 * Crane in SR2.
==== SRM (low priority) ====
 * Hirose-san, Hirata-san and Fujji-san fixed the RM to the SS and removed the SRM for cleaning.
 * Terrence installed the optical breadboards on the shelfs for the OPLEV; and, assembled the beamsplitter assembly, lens assembly and the folding mirror assembly. The LED box, collimator and the fibre connected were placed on the lower breadboard and the others are placed on the upper one. Still missing steering mirror to complete a tilt setup and a lens for the length OPLEV.
Line 54: Line 66:
===== SRM (lower priority) =====
 *
===== Etc =====
 * Prepare for scheduled power outage on 9/10.

==== Plan for week of 9/10 ====
 * Monday 9/10 is scheduled power outage.
 * Mark in US (job interview).
 * Hirata-san, Fabian, Kozu-kun, Panwei at Kamioka Tue-Fri.
 * Enzo at Kamioka Tue-Thu, then JPS Meeting Fri, then vacation.
===== Etc =====
 * Recover from power outage.
===== SRM (highest priority) =====
 * Set pitch of SRM and RM, tighten clamps, remove winch system.
 * Weigh IM/... section.
 * Build up SS to BF level.
 * Suspend IM and tweak height/balance.
 
===== SR2 (lower priority) =====
 * Move SR2 in-air cables.

==== Plan for week of 9/17 ====
 * Monday 9/17 is holiday (Respect for the Aged Day).
 * Enzo on vacation.
 * Mark, Hirata-san, Fabian, Kozu-kun, Panwei at Kamioka Tue-Fri.
===== SRM (highest priority) =====
 * Install IRM.
===== SR2 (lower priority) =====
 * Remove First Contact on SR2.
 * Unlock and realign payload.

==== Plan for week of 9/24 ====
 * Monday 9/24 is holiday (Autumn Equinox).
 * Mark, Hirata-san, Fabian, Kozu-kun, Panwei at Kamioka Tue-Fri.

==== To-Do Lists, Schedule ====
 * [[KAGRA/Subgroups/VIS/TypeB/ToDoBS]]
 * [[KAGRA/Subgroups/VIS/TypeB/ToDoSR]]
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=7779|JGW-L1807779 Type B Schedule (SR)]]

==== Vacation Info ====
 * Mark: 8/13-16.
 * Hirata-san: 8/13-17
 * Terrence: 8/24-26 f2f, then returns to Hong Kong.
 * Enzo: 9/14 JPS, 9/15 through 10/8 vacation in Chile.
==== Postponed ====
 * Raise suspension 3.5 mm on jacks.
 * Check/improve payload alignment and IM OSEMs. Recheck optic pitch with OL as needed.\
 * Adjust F0 keystone trim to give desired height and secure weights in place.
 * Install geophones and arc weights.
 * Center and tune IP.
 * Hook LBB and add just enough ballast to have it bouncing.
 * Wipe inside tank with Vectra-Alpha wipes and IPA.
 * Set up TILT OL.

Scraps of text for incorporation in the VIS Meeting Minutes

KAGRA/Subgroups/VIS/MeetingNAOJ

Type B (Mark)

Report for week of 1/14

  • Etc
  • BS
  • SR2
    • Hirata-san helped with installing the obelisk on the LBB, and added counterweights to get the LBB level and at the right height for the first rough alignment. However the springs were still at or near the top stops, so he later pulled down the LBB with excess mass, locked the blades at the bottom of their range and reset the LBB rods and damping magnet ring, aiming off by 10 mm so that it would be correct when the LBB was allowed to rise. However he left it pressed down for now so that Hirose-san could apply FC. Early next week he will release it and do the final ballasting.
  • SR3
    • Enzo installed IM damping filters.
    • Mark installed a BIO Converter for the stepper remote enable (which will eventually also be used for the WD).
    • Fabian researched buoyancy compensation and pre-applied as much as possible. The total compensation needed is 0.19 mm for F0, 0.48 mm for SF and 0.46 mm for BF, total 1.23 mm.
  • SRM
    • Mirapro helped us with the camera viewport issue by giving us a gasket of the same type but a different brand from their stock, which snapped easily into place. We then installed the viewport on the tank.
    • Fabian calibrated the F0 FR.

Report for week of 1/21

BS (top priority)

  • Last Friday: We tuned the IP to have a lower frequency. At the begginig we measured 78mHz.
  • Last Friday: With Lucia, we centered the IP and diagonalized the IP. After this process we measured a resonant frequency of 40mHz. We closed the position control loop for the IP.
  • We checked during the weekend and the suspension was not in a healthy state. We checked the IM horizontal OSEM coil driver, and there were some cables in the wrong connectors. (Test in instead of ...)
  • The adapter for the cable of the F0 fishing rod was not healtly. We fixed it but it might be good to replace it.
  • The commissioning team steered the BS IM to reach the Y-end and then Terrence centered the oplev with this orientation (more than once).
  • Fujii-san and Enzo fixed old BS geophones by replacing the Preamp.
  • We replaced the Geophones for the recently fixed ones.
  • Hirata-san and Fabian secured trim masses to the keystone.
  • We installed GAS Filters and IM control loops
  • Currently Terrence and Enzo are centering the IP using the horizontal fishing rods.

SR2 (priority 2)

  • We measured the optic height. According to the measurement it was 0.1 mm off. However, the systematic error is likely larger (laser level, position of reference). Apparently, the RM has a small amount of roll but this should be investigated further. It might just be systemaric error of the measurement. The roll of IM was adjusted to a value close to zero before the measurement.
  • We calibrated the F0 fishing rod stepper motor.
  • We raised suspension using the jacks. We rotated the jacks by 180 degrees roughly.Compensation has to happen with F0, F1 and BF.
  • We removed tape, writing etc on PI and PI items.
  • We removed the trim mass.
  • Terrence restored the OPLEV to the original layout with an 1.1 m collimator and calibrated the tilt sensing QPD. Expect a pitch range of +/-223 urad and a yaw range of +\-322 urad.
  • We centered the IP by using the jacks. L and T came good but there is a large yaw ~ 5 mrad.
  • We diagonalized the IP actuation matrix. We closed the position control loop for the IP. (This has not happened yet).

  • We installed GAS Filters and IM control loops. (This has not happened yet).

SR3 (priority 2)

  • The bouyancy correction was calculated. It's 1.3 mm.
  • The strategy is rasing the suspension by 1.3 mm and then moving the keystone by 1.3 mm with the fishing rod so the alignment team can work.
  • We measured the optic height using Terada-san's reference. The SR2 optic was at the correct height.
  • We raised suspension using the jacks by an amount calculated with the jack thread: M42 with 2 mm special thread. We rotated the jacks by approximately 180 degrees.
  • Terrence reinstalled OL LED, collimator (1.1 m) and relaigned the OL. Both QPDs were calibrated and expect a range of L: $\pm$332 $\mu m$, P: $\pm$217 $\mu rad$ and Y: $\pm$306 $\mu rad$.
  • OPLEV diagonalization hasn't been done but we expect minimal coupling due to the OPLEV. Strange couplings (due to the geometry of TM) are expected but no conclusive results yet.
  • We removed tape, writing etc on PI and PI items.
  • We calibrated the F0 FR against the readout of the F0 LVDT. We removed the trim masses (110 g). Then we moved the F0 keystone by 1.3 mm downwards.
  • We centered the IP by adjusting the height of the jacks by small amounts. Longitudinal and Transverse positions came good but there was a large yaw (-5 mrad) when the stepper motors were in mid-range. Currently the yaw is -1 mrad and the steppers are using 80% of their range already.
  • The F0 yaw stepper should, in principle, give plus minus 125 mrad range. We should check with a measurement how good this range is (e.g. cables being pulled, components touching, etc.) We can use the vertical laser level as an oplev or the main interferometer beam
  • The front of the optic was cleaned by Hirose-san with Hirata-san's help. Hirata-san and Fujii-kun released the optic. The IP is still locked.

  • F1 fishing rod is not responsive. We have to check the cables.

  • We diagonalized the IP actuation matrix. We closed the position control loop for the IP. (This has not happened yet).

  • We installed GAS Filters and IM control loops. (This has not happened yet).

Talk about problems turning on and off control systems (Terrence and Enzo) From Terrence: Since the PI controller was implemented, the controller keeps accumulator displacements error and converts this error to the output. One problem arose from the mismatch of the control system and the actual hardware. Because the controller output could have a much larger value than the number of counts that can be input to the coil actuators (e.g. the controller says we should input 60000 counts to the actuators but the hardware limits the number of counts), the controller will not function as designed. As a result, the PI would shift to one side (due to insufficient driving force) while the voices coils became saturated at maximum output. Additionally, because the controller is still functioning, the integrator keeps accumulating error and hence the output of the controller keeps increasing but the object is actually stuck. This makes the IP very very unstable when the actuators are saturated.

Give status of oplevs (Terrence and Enzo).

SRM (low priority)

  • Hirose-san, Hirata-san and Fujji-san fixed the RM to the SS and removed the SRM for cleaning.
  • Terrence installed the optical breadboards on the shelfs for the OPLEV; and, assembled the beamsplitter assembly, lens assembly and the folding mirror assembly. The LED box, collimator and the fibre connected were placed on the lower breadboard and the others are placed on the upper one. Still missing steering mirror to complete a tilt setup and a lens for the length OPLEV.

Postponed

  • Raise suspension 3.5 mm on jacks.
  • Check/improve payload alignment and IM OSEMs. Recheck optic pitch with OL as needed.\
  • Adjust F0 keystone trim to give desired height and secure weights in place.
  • Install geophones and arc weights.
  • Center and tune IP.
  • Hook LBB and add just enough ballast to have it bouncing.
  • Wipe inside tank with Vectra-Alpha wipes and IPA.
  • Set up TILT OL.

KAGRA/Subgroups/VIS/TypeB/Minutes (last edited 2022-10-28 10:02:46 by fabian.arellano)