Differences between revisions 331 and 425 (spanning 94 versions)
Revision 331 as of 2018-10-05 18:27:58
Size: 3203
Editor: MarkBarton
Comment:
Revision 425 as of 2019-05-24 13:05:13
Size: 6416
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
Line 6: Line 5:
==== Report for week of 10/1 ====
===== SR2 =====
 * We solved a mystery with the height of the BF keystone: it turns out that running the table KOACH filters in the tank warms it up (by about 1.5°C) and causes significant sag (700 µm). D'oh!
 * We ran power to the pico drivers.
 * We got the lower section of the SR2 fairly well aligned with just a bit of adjustment with the IM pitch and roll picos.
 * We helped Lucia double-check the geometry of the IP - the current matrix calculation assumes the FRs and the LVDT sensors and actuators are colocated, which is much closer to true than for the BS, but not quite right.
 * We gave up on doing anything more with SR2 for now because we're waiting on extra extension cables for the PI and Fujii-kun will want to borrow one of the geophones next week for a huddle test with new geophones.
===== SRM =====
 * We set the pitch of the SRM and RM, tightened the clamps and removed the winch system.
 * We installed the BF crossbars of the assembly frame and the BF ring section of the security structure.
 * We lifted the IM/... section on the load gauge to find its weight.
 * We craned in the BF and removed the cap.
 * We installed the BF-IRM rods and the IRM top plate.
 * We installed the BF-IM maraging rod and flying saucer cable clamps.
 * We suspended the IM/... section and adjusted the trim masses for balance and total mass. It took quite a lot of adjustment in each of pitch, roll and vertical. The vertical was due to the fact that the weight of the IM/... section is very close to that of SR2/SR3 but the SRM BF is about 0.5 kg weaker. The roll was due to the fact that the default configuration of trim mass had no correction for the horizontal wedge on the optic. However the pitch is a bit of a mystery - nearly all of the removed mass had to come off the AR side. Fortunately we were able to correct for it entirely with masses we had in hand.
 * We routed the TM OSEM cables via the flying saucer up to the underside of the BF.
 * We got 2 power supplies from Shimode-san so we can fire up the SRM rack next week. He will also supply suitable cables to connect the power supplies to the DC power strip in the rack.
 * We received the replated yoke for the SRM top filter.
==== Report for the week 5/20 (written by Fabian) ====
 * Terrence implemented a filter for the inertial damping. See entry [[http://klog.icrr.u-tokyo.ac.jp/osl/?r=8905|8905]].
 * The highlight of the week is Terrence's measurement of the residual motion of the SR2 optic: as measured by the oplev, it does fulfill the RMS displacement and velocity requirements for lock acquisition and, partially, for the observation mode also. See the report at klog entry [[http://klog.icrr.u-tokyo.ac.jp/osl/?r=8949|8949]].
  * The integrated RMS was calculated from 5 Hz to DC because there are some peaks between 8 Hz and 10 Hz and whose origin still has to be clarified. See the report at entries [[http://klog.icrr.u-tokyo.ac.jp/osl/?r=8918|8918]] and [[http://klog.icrr.u-tokyo.ac.jp/osl/?r=8933|8933]].
  * After Akutsu-san's suggestion Terrence improved the air shield in two rounds, including a cylindrical cover around the viewport. This reduced the noise by about a factor of 10.
  * He realized setting up the shield may have slightly changed something in the oplev and carried out another round of diagonalization.
  * He realized the H3 coil was not working. We fixed it.A cable was disconnected.
  * The optic residual motion in L showed a large peaks close to 0.2 Hz, which is where the micro-seismic may become apparent. The peak was not seen in P or Y. The inertial damping system is likely not working in a suitable way. The blending frequency is 0.190 Hz which may not be low enough.
  * At the end measurement of the residual motion reported was carried out with inertial damping only in yaw.
 * Fabian, Terrence and Fujii-kun measured the settings of the SR2, BS LVDT drivers and one of SR2's. See klogs [[http://klog.icrr.u-tokyo.ac.jp/osl/?r=8941|8941]] , [[http://klog.icrr.u-tokyo.ac.jp/osl/?r=8951|8951]] and [[http://klog.icrr.u-tokyo.ac.jp/osl/?r=8952|8952]].
 * Fabian worked more on the calculation of the amount of sensor noise injected:
  * I imported Panwei's OSEM noise measurements and calculated the virtual sensor noise.
  * I imported Fujii-kun's measuement of the geophone noise and calculated the virtual sensor noise.
  * I imported the blending filter
  * I wrote lots of comments in Sekiguchi-kun's Matlab scripts.
  * I will write a klog soon with preliminar results.
 * Fabian submitted and abstract for the Autumn JPS meeting on September.
Line 25: Line 23:
==== Plan for week of 10/8 ====
 * Monday 10/8 is Sports Day.
 * Enzo returns Tuesday 10/9.
 * Mark and Terrence (plus TBD) at Kamioka Mon-Fri.
 * Enzo, Hirata-san, Fabian and Panwei at Kamioka Tue-Fri.
===== SR2/SR3 =====
 * Terrence to set up LEN half of SR3 OL and, time permitting, TILT and LEN for SR2.
===== SRM =====
 * Cable/test BF.
 * Install IRM.
 * Install/cable/test IM OSEMs.
 * Suspend/weigh/balance the BF/... section.
==== Plan for the week 5/25 ====
 * Terrence will work in the optimization of the inertial damping.
 * Fabian will continue with the calculation and prepare a presentation for the conference in Brazil.
Line 38: Line 27:
==== To-Do Lists, Schedule ====
 * [[KAGRA/Subgroups/VIS/TypeB/ToDoBS]]
 * [[KAGRA/Subgroups/VIS/TypeB/ToDoSR]]
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=7779|JGW-L1807779 Type B Schedule (SR)]]
==== Report for Golden Week ====
 * Mark monitored vent and pumpdown, and worked on vistools.py.
Line 43: Line 30:
==== Vacation/Visitor Info ====
 * Enzo: 9/15 through 10/8 vacation in Chile.
 * Terrence: 10/8-12, 10/29-11/2 at Kamioka.
==== Report for the week of 5/6 ====
 * Lucia and Terrence got the blending working for the IP LVDTs and geophones.
 * Terrence and Mark modified the models and MEDM screens to add a new IP block, IDAMP, for damping using the blended signal with inertial information, and a new DAMPMODE block for ramping smoothly between IDAMP and the old DAMP.
 * Mark worked on vistools.py, improving the support for cdsMuxMatrix blocks (e.g., OSEM2EUL) and adding support for cdsRampMuxMatrix blocks (e.g., the newly introduced DAMPMODE). He also created two sets of unit tests, unittest.py and unittest.sh, for the two modes of use (as a Python module in other Python programs, and as a command-line utility in bash).

==== Report for week of 5/13 ====
 * Terrence measured Q's for nearly all modes on SR2 from TFs and then did some ring-down tests to get a better estimate of some high-Q modes.
 * Terrence and Mark looked at the velocity and angular velocity noise of the SR2 as reported by the LEN and TILT OLs.
  * The Y signal was fairly clean and the Y RMS angular velocity requirement was met. However the L signal was quite noisy, and was also contaminating the P signal due to the large cross terms in the diagonalization matrix. The RMS L from 5 Hz down with damping on was around 10 µm/s, which is 10 times the requirement. However little of this was due to pendulum resonances - most of the noise was featureless and broadband. In displacement units the noise was flat up to about 1 Hz and then smoothly rolled off to f^-2. The noise in the raw P and Y signals (not yet divided by the sum) was about 10 times the noise in the SUM.
  * We tried improving the noise with different whitening settings. Increasing the overall gain, increasing it at the QPD but reducing it at the whitening filter, and switching off the 1-10Hz boost whitening filter (and compensating software filter) had no effect. Blocking the beam reduced the noise by about 2 orders and brought the raw P and Y in line with the SUM, suggesting that the problem was before the QPD. Akutsu-san says the noise spectrum looks like it may be limited by air currents, and we probably need better wind shielding.
 * Mark swapped in an improved version of `vistools.py`, debugged a few small issues, and simplified the `TYPEB.py` Guardian.
 * Fabian embarked on a project to calculate the residual motion within KAGRA's observation band (beginning at 10 Hz) to make sure The Type B suspension fulfills the requirement, and calculate the speed of the optic to make sure we can acquire the lock.
  * He modified Takanori's Simulink/Matlab simulation in order to include the length sensing oplev and its control feedback path.
  * He imported Enzo's IM/GAS/IP-LVDT filters into the simulation.
  * He imported into the simulation the measured LVDT floor noise (sensitivities).
  * He calculated the IP-L, IP-T and IP-Y sensitivities.

==== Plan for week of 5/20 ====
 * Mark at Mitaka Mon, Tue; US from Wed till 6/11.
 * Fabian
  * Import Panwei's OSEM sensitivity measurements and calculate the sensitivity of the virtual IM sensors.
  * Import geophones sensitivities and calculate the sensitivity of the corresponding virtual sensors.
  * Import Licia's and Terrence's inertial sensing filters.
 * Terrence
  * Try to reduce the OL noise and get better estimates of the RMS velocity with damping on.

==== Vacation/Travel Info ====
 * Terrence's next visit from 4/18 to 7/27.
 * Mark's US vacation from 5/22 to 6/11.
 * Fabian at conference in Brazil from 5/31 to 6/17.
 * Mark's final day 6/28.

Scraps of text for incorporation in the VIS Meeting Minutes

KAGRA/Subgroups/VIS/MeetingNAOJ

Type B (Mark)

Report for the week 5/20 (written by Fabian)

  • Terrence implemented a filter for the inertial damping. See entry 8905.

  • The highlight of the week is Terrence's measurement of the residual motion of the SR2 optic: as measured by the oplev, it does fulfill the RMS displacement and velocity requirements for lock acquisition and, partially, for the observation mode also. See the report at klog entry 8949.

    • The integrated RMS was calculated from 5 Hz to DC because there are some peaks between 8 Hz and 10 Hz and whose origin still has to be clarified. See the report at entries 8918 and 8933.

    • After Akutsu-san's suggestion Terrence improved the air shield in two rounds, including a cylindrical cover around the viewport. This reduced the noise by about a factor of 10.
    • He realized setting up the shield may have slightly changed something in the oplev and carried out another round of diagonalization.
    • He realized the H3 coil was not working. We fixed it.A cable was disconnected.
    • The optic residual motion in L showed a large peaks close to 0.2 Hz, which is where the micro-seismic may become apparent. The peak was not seen in P or Y. The inertial damping system is likely not working in a suitable way. The blending frequency is 0.190 Hz which may not be low enough.
    • At the end measurement of the residual motion reported was carried out with inertial damping only in yaw.
  • Fabian, Terrence and Fujii-kun measured the settings of the SR2, BS LVDT drivers and one of SR2's. See klogs 8941 , 8951 and 8952.

  • Fabian worked more on the calculation of the amount of sensor noise injected:
    • I imported Panwei's OSEM noise measurements and calculated the virtual sensor noise.
    • I imported Fujii-kun's measuement of the geophone noise and calculated the virtual sensor noise.
    • I imported the blending filter
    • I wrote lots of comments in Sekiguchi-kun's Matlab scripts.
    • I will write a klog soon with preliminar results.
  • Fabian submitted and abstract for the Autumn JPS meeting on September.

Plan for the week 5/25

  • Terrence will work in the optimization of the inertial damping.
  • Fabian will continue with the calculation and prepare a presentation for the conference in Brazil.

Report for Golden Week

  • Mark monitored vent and pumpdown, and worked on vistools.py.

Report for the week of 5/6

  • Lucia and Terrence got the blending working for the IP LVDTs and geophones.
  • Terrence and Mark modified the models and MEDM screens to add a new IP block, IDAMP, for damping using the blended signal with inertial information, and a new DAMPMODE block for ramping smoothly between IDAMP and the old DAMP.
  • Mark worked on vistools.py, improving the support for cdsMuxMatrix blocks (e.g., OSEM2EUL) and adding support for cdsRampMuxMatrix blocks (e.g., the newly introduced DAMPMODE). He also created two sets of unit tests, unittest.py and unittest.sh, for the two modes of use (as a Python module in other Python programs, and as a command-line utility in bash).

Report for week of 5/13

  • Terrence measured Q's for nearly all modes on SR2 from TFs and then did some ring-down tests to get a better estimate of some high-Q modes.
  • Terrence and Mark looked at the velocity and angular velocity noise of the SR2 as reported by the LEN and TILT OLs.
    • The Y signal was fairly clean and the Y RMS angular velocity requirement was met. However the L signal was quite noisy, and was also contaminating the P signal due to the large cross terms in the diagonalization matrix. The RMS L from 5 Hz down with damping on was around 10 µm/s, which is 10 times the requirement. However little of this was due to pendulum resonances - most of the noise was featureless and broadband. In displacement units the noise was flat up to about 1 Hz and then smoothly rolled off to f^-2. The noise in the raw P and Y signals (not yet divided by the sum) was about 10 times the noise in the SUM.
    • We tried improving the noise with different whitening settings. Increasing the overall gain, increasing it at the QPD but reducing it at the whitening filter, and switching off the 1-10Hz boost whitening filter (and compensating software filter) had no effect. Blocking the beam reduced the noise by about 2 orders and brought the raw P and Y in line with the SUM, suggesting that the problem was before the QPD. Akutsu-san says the noise spectrum looks like it may be limited by air currents, and we probably need better wind shielding.
  • Mark swapped in an improved version of vistools.py, debugged a few small issues, and simplified the TYPEB.py Guardian.

  • Fabian embarked on a project to calculate the residual motion within KAGRA's observation band (beginning at 10 Hz) to make sure The Type B suspension fulfills the requirement, and calculate the speed of the optic to make sure we can acquire the lock.
    • He modified Takanori's Simulink/Matlab simulation in order to include the length sensing oplev and its control feedback path.
    • He imported Enzo's IM/GAS/IP-LVDT filters into the simulation.
    • He imported into the simulation the measured LVDT floor noise (sensitivities).
    • He calculated the IP-L, IP-T and IP-Y sensitivities.

Plan for week of 5/20

  • Mark at Mitaka Mon, Tue; US from Wed till 6/11.
  • Fabian
    • Import Panwei's OSEM sensitivity measurements and calculate the sensitivity of the virtual IM sensors.
    • Import geophones sensitivities and calculate the sensitivity of the corresponding virtual sensors.
    • Import Licia's and Terrence's inertial sensing filters.
  • Terrence
    • Try to reduce the OL noise and get better estimates of the RMS velocity with damping on.

Vacation/Travel Info

  • Terrence's next visit from 4/18 to 7/27.
  • Mark's US vacation from 5/22 to 6/11.
  • Fabian at conference in Brazil from 5/31 to 6/17.
  • Mark's final day 6/28.

KAGRA/Subgroups/VIS/TypeB/Minutes (last edited 2022-10-28 10:02:46 by fabian.arellano)