Differences between revisions 366 and 385 (spanning 19 versions)
Revision 366 as of 2018-12-21 13:48:22
Size: 5371
Editor: MarkBarton
Comment:
Revision 385 as of 2019-02-01 12:23:41
Size: 7764
Editor: MarkBarton
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
Line 6: Line 5:
==== Report for week of 12/17 ==== ==== Report for week of 1/14 ====
 * Etc
Line 8: Line 8:
  * Miyakawa-san worked on the BS real-time model and the gain/offset settings for the F0 LVDTINF block were lost, so we reentered them and did a new safe.snap file.  * SR2
  * Hirata-san helped with installing the obelisk on the LBB, and added counterweights to get the LBB level and at the right height for the first rough alignment. However the springs were still at or near the top stops, so he later pulled down the LBB with excess mass, locked the blades at the bottom of their range and reset the LBB rods and damping magnet ring, aiming off by 10 mm so that it would be correct when the LBB was allowed to rise. However he left it pressed down for now so that Hirose-san could apply FC. Early next week he will release it and do the final ballasting.
 * SR3
  * Enzo installed IM damping filters.
  * Mark installed a BIO Converter for the stepper remote enable (which will eventually also be used for the WD).
  * Fabian researched buoyancy compensation and pre-applied as much as possible. The total compensation needed is 0.19 mm for F0, 0.48 mm for SF and 0.46 mm for BF, total 1.23 mm.
Line 10: Line 15:
  * We unlocked the IP adjusted the level with the jacks to center it. As hoped, this also improved the alignment of the chain insecurity structure and fixed a touching issue.
  * Hirata-san installed and cabled the new F0 yaw stepper. We had allowed plenty of reserve mass, so there was no problem getting back to nominal height of the keystone. We still need to test this stepper.
  * We found that the Nikhef method Fabian had used to tune the F0 LVDT driver gave an artificially narrow working range, so he retuned it with Enzo's method and recalibrated the LVDT.
  * Fabian did a vertical position survey with all the GAS filters at nominal and found the height of the RM above the SS bottom plate was about 2.5 mm lower than in the CAD. This is about what we expected from a chain 7 mm longer than CAD and and F0 keystone set to 5 mm higher than CAD. In future we can survey to either the optic or the security structure as convenient, and we are in the range where we should easily be able to match the correct beam height with the jacks under the PI.
  * We got two OL viewports for SRM from Akutsu-san, and will install them sometime in January, whenever we have a free moment. Akutsu-san pre-torqued the inner ring of screws around the glass, so we only need to torque the outer bolts.
  * We took transfer functions for the IM. All of them look good except IM-T. We will inspect the payload next week in case anything is touching or rubbing.
  * Hirata-san opened the +X door of the vacuum chamber so we could inspect the payload, especially the OSEMs. We closed it back and covered with tape a small gap at the door.
 * SR3
  * We also got a camera viewport for SR3 from Akutsu-san and will install it sometime in January.
  * Hirata-san installed and cabled the new F0 yaw stepper.
 * SR2
  * Enzo calibrated the SR2 OL. He noted that with the standard f=2500 mm collimator, the angular range was only about 100 µrad in pitch and 150 µrad in yaw, which is rather less than Enomoto-kun's preferred range of more like 400 µrad, so we borrowed f=1100 mm and f=3500 mm collimators to characterize. Enzo did f=1100 mm and will do f=3500 mm soon.
  * Hirata-san installed and cabled the new F0 yaw stepper. We did not have enough reserve mass for SR2, so to save 300 g we had Mesco make a new, lighter top plate, and Hirata-san ultrasonically cleaned it. We were then able to get the desired F0 keystone height with about 200 g to spare.
  * The day after installing the yaw stepper, we noticed the RM was touching the security structure but we were able to move it free by adjusting the cylinder with the spring and leaving the stepper motor in its nominal position. After this, for the other suspensions, we always checked the yaw of the payload immediately after installing the stepper.)
 * Etc
  * Enzo did a historical survey of the temperature as the various suspensions were being built and concluded that ideal operating temperature would be 25°C in the BS/SR2 area and 24°C for SR3/SRM.
  * Mark wrote a bash script to log all the GAS filter heights and LVDT actuation offsets, and an Excel spreadsheet to analyze the data to get an overview of the heights of the suspensions and the amount of height adjustment being used. He also reviewed old TF data to get near-DC values for the effect of GAS actuation on GAS height. This uncovered a few issues with calibration settings (such as for BS F0) having been lost because they hadn't been recorded in a safe.snap file, which we fixed.
  * Mirapro helped us with the camera viewport issue by giving us a gasket of the same type but a different brand from their stock, which snapped easily into place. We then installed the viewport on the tank.
  * Fabian calibrated the F0 FR.
Line 28: Line 18:
==== To-Do Lists, Schedule ====
 * [[KAGRA/Subgroups/VIS/TypeB/ToDoBS]]
 * [[KAGRA/Subgroups/VIS/TypeB/ToDoSR]]
 * [[https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=7779|JGW-L1807779 Type B Schedule (SR)]]
==== Report for week of 1/21 ====
==== BS (top priority) ====
 * Last Friday: We tuned the IP to have a lower frequency. At the begginig we measured 78mHz.
 * Last Friday: With Lucia, we centered the IP and diagonalized the IP. After this process we measured a resonant frequency of 40mHz. We closed the position control loop for the IP.
 * We checked during the weekend and the suspension was not in a healthy state. We checked the IM horizontal OSEM coil driver, and there were some cables in the wrong connectors. (Test in instead of ...)
 * The adapter for the cable of the F0 fishing rod was not healtly. We fixed it but it might be good to replace it.
 * The commissioning team steered the BS IM to reach the Y-end and then Terrence centered the oplev with this orientation (more than once).
 * Fujii-san and Enzo fixed old BS geophones by replacing the Preamp.
 * We replaced the Geophones for the recently fixed ones.
 * Hirata-san and Fabian secured trim masses to the keystone.
 * We installed GAS Filters and IM control loops
 * Currently Terrence and Enzo are centering the IP using the horizontal fishing rods.
Line 33: Line 31:
==== Plan for week of 12/17 ====
 * Final alignment of SRM payload, plus BF and SF GAS.
 * (Time permitting) unlocking/centering/tuning of IP.
 * Installation of Enomoto-kun's beam target on SRM (if available).
 * Installation/testing of F0 steppers on SR2, SR3, SRM, and (hopefully) final vertical height adjustment.
 * Installation of viewports on SRM.
==== SR2 (priority 2) ====
 * We measured the optic height. According to the measurement it was 0.1 mm off. However, the systematic error is likely larger (laser level, position of reference). Apparently, the RM has a small amount of roll but this should be investigated further. It might just be systemaric error of the measurement. The roll of IM was adjusted to a value close to zero before the measurement.
 * We calibrated the F0 fishing rod stepper motor.
 * We raised suspension using the jacks. We rotated the jacks by 180 degrees roughly.Compensation has to happen with F0, F1 and BF.
 * We removed tape, writing etc on PI and PI items.
 * We removed the trim mass.
 * Terrence restored the OPLEV to the original layout with an 1.1 m collimator and calibrated the tilt sensing QPD. Expect a pitch range of +/-223 urad and a yaw range of +\-322 urad.
 * We centered the IP by using the jacks. L and T came good but there is a large yaw ~ 5 mrad.
 * We diagonalized the IP actuation matrix. We closed the position control loop for the IP. '''(This has not happened yet).'''
 * We installed GAS Filters and IM control loops. '''(This has not happened yet).'''
Line 40: Line 42:
==== Plan for week of 12/24 ====
 * Mark and Hirata-san on holidays, Enzo at Mitaka, Fabian.
==== SR3 (priority 2) ====
 * The bouyancy correction was calculated. It's 1.3 mm.
 * The strategy is rasing the suspension by 1.3 mm and then moving the keystone by 1.3 mm with the fishing rod so the alignment team can work.
 * We measured the optic height using Terada-san's reference. The SR2 optic was at the correct height.
 * We raised suspension using the jacks by an amount calculated with the jack thread: M42 with 2 mm special thread. We rotated the jacks by approximately 180 degrees.
 * Terrence reinstalled OL LED, collimator (1.1 m) and relaigned the OL. Both QPDs were calibrated and expect a range of L: $\pm$332 $\mu m$, P: $\pm$217 $\mu rad$ and Y: $\pm$306 $\mu rad$.
 * OPLEV diagonalization hasn't been done but we expect minimal coupling due to the OPLEV. Strange couplings (due to the geometry of TM) are expected but no conclusive results yet.
 * We removed tape, writing etc on PI and PI items.
 * We calibrated the F0 FR against the readout of the F0 LVDT. We removed the trim masses (110 g). Then we moved the F0 keystone by 1.3 mm downwards.
 * We centered the IP by adjusting the height of the jacks by small amounts. Longitudinal and Transverse positions came good but there was a large yaw (-5 mrad) when the stepper motors were in mid-range. Currently the yaw is -1 mrad and the steppers are using 80% of their range already.
 * The F0 yaw stepper should, in principle, give plus minus 125 mrad range. We should check with a measurement how good this range is (e.g. cables being pulled, components touching, etc.) We can use the vertical laser level as an oplev or the main interferometer beam
 * The front of the optic was cleaned by Hirose-san with Hirata-san's help. Hirata-san and Fujii-kun released the optic. '''The IP is still locked.'''
 * '''F1 fishing rod is not responsive. We have to check the cables.'''
 * We diagonalized the IP actuation matrix. We closed the position control loop for the IP. '''(This has not happened yet).'''
 * We installed GAS Filters and IM control loops. '''(This has not happened yet).'''
Line 43: Line 58:
==== Plan for week of 1/7 ====
 * Make sure BS is floating, recenter OL to capture current yaw position.
 * Vent BS.
 * Inspect BS F0 blades for cracks.
 * Install new BS F0 FR, and (if necessary) auxiliary CuBe spring.
 * Confirm geometry of LVDTs, geophones, FRs etc and update T1707205 if necessary.
 * Replace geophone preamps and cables (to fix noise, offset, pinout flip issues).
 * Add more mass to IP to get lower frequency.
 * Adjust all GAS filters to near mid-range (using keystone mass for F0 as much as possible, and FR+LVDT for SF and BF).
'''Talk about problems turning on and off control systems (Terrence and Enzo)''' From Terrence: Since the PI controller was implemented, the controller keeps accumulator displacements error and converts this error to the output. One problem arose from the mismatch of the control system and the actual hardware. Because the controller output could have a much larger value than the number of counts that can be input to the coil actuators (e.g. the controller says we should input 60000 counts to the actuators but the hardware limits the number of counts), the controller will not function as designed. As a result, the PI would shift to one side (due to insufficient driving force) while the voices coils became saturated at maximum output. Additionally, because the controller is still functioning, the integrator keeps accumulating error and hence the output of the controller keeps increasing but the object is actually stuck. This makes the IP very very unstable when the actuators are saturated.
Line 53: Line 60:
==== Vacation/Etc Info ====
 * Mark: 12/24 - 1/4.
 * Hirata-san: 12/24 - 1/4.
 * Fabian: 12/31 - 1/4
 * Enzo: 12/31 - 1/4.
 * Mark and Enzo: KAGRA International Workshop in Perugia, 2/14-16.
 * Terrence: back at Kamioka from 1/7.
'''Give status of oplevs (Terrence and Enzo).'''

==== SRM (low priority) ====
 * Hirose-san, Hirata-san and Fujji-san fixed the RM to the SS and removed the SRM for cleaning.
 * Terrence installed the optical breadboards on the shelfs for the OPLEV; and, assembled the beamsplitter assembly, lens assembly and the folding mirror assembly. The LED box, collimator and the fibre connected were placed on the lower breadboard and the others are placed on the upper one. Still missing steering mirror to complete a tilt setup and a lens for the length OPLEV.

==== Postponed ====
 * Raise suspension 3.5 mm on jacks.
 * Check/improve payload alignment and IM OSEMs. Recheck optic pitch with OL as needed.\
 * Adjust F0 keystone trim to give desired height and secure weights in place.
 * Install geophones and arc weights.
 * Center and tune IP.
 * Hook LBB and add just enough ballast to have it bouncing.
 * Wipe inside tank with Vectra-Alpha wipes and IPA.
 * Set up TILT OL.

Scraps of text for incorporation in the VIS Meeting Minutes

KAGRA/Subgroups/VIS/MeetingNAOJ

Type B (Mark)

Report for week of 1/14

  • Etc
  • BS
  • SR2
    • Hirata-san helped with installing the obelisk on the LBB, and added counterweights to get the LBB level and at the right height for the first rough alignment. However the springs were still at or near the top stops, so he later pulled down the LBB with excess mass, locked the blades at the bottom of their range and reset the LBB rods and damping magnet ring, aiming off by 10 mm so that it would be correct when the LBB was allowed to rise. However he left it pressed down for now so that Hirose-san could apply FC. Early next week he will release it and do the final ballasting.
  • SR3
    • Enzo installed IM damping filters.
    • Mark installed a BIO Converter for the stepper remote enable (which will eventually also be used for the WD).
    • Fabian researched buoyancy compensation and pre-applied as much as possible. The total compensation needed is 0.19 mm for F0, 0.48 mm for SF and 0.46 mm for BF, total 1.23 mm.
  • SRM
    • Mirapro helped us with the camera viewport issue by giving us a gasket of the same type but a different brand from their stock, which snapped easily into place. We then installed the viewport on the tank.
    • Fabian calibrated the F0 FR.

Report for week of 1/21

BS (top priority)

  • Last Friday: We tuned the IP to have a lower frequency. At the begginig we measured 78mHz.
  • Last Friday: With Lucia, we centered the IP and diagonalized the IP. After this process we measured a resonant frequency of 40mHz. We closed the position control loop for the IP.
  • We checked during the weekend and the suspension was not in a healthy state. We checked the IM horizontal OSEM coil driver, and there were some cables in the wrong connectors. (Test in instead of ...)
  • The adapter for the cable of the F0 fishing rod was not healtly. We fixed it but it might be good to replace it.
  • The commissioning team steered the BS IM to reach the Y-end and then Terrence centered the oplev with this orientation (more than once).
  • Fujii-san and Enzo fixed old BS geophones by replacing the Preamp.
  • We replaced the Geophones for the recently fixed ones.
  • Hirata-san and Fabian secured trim masses to the keystone.
  • We installed GAS Filters and IM control loops
  • Currently Terrence and Enzo are centering the IP using the horizontal fishing rods.

SR2 (priority 2)

  • We measured the optic height. According to the measurement it was 0.1 mm off. However, the systematic error is likely larger (laser level, position of reference). Apparently, the RM has a small amount of roll but this should be investigated further. It might just be systemaric error of the measurement. The roll of IM was adjusted to a value close to zero before the measurement.
  • We calibrated the F0 fishing rod stepper motor.
  • We raised suspension using the jacks. We rotated the jacks by 180 degrees roughly.Compensation has to happen with F0, F1 and BF.
  • We removed tape, writing etc on PI and PI items.
  • We removed the trim mass.
  • Terrence restored the OPLEV to the original layout with an 1.1 m collimator and calibrated the tilt sensing QPD. Expect a pitch range of +/-223 urad and a yaw range of +\-322 urad.
  • We centered the IP by using the jacks. L and T came good but there is a large yaw ~ 5 mrad.
  • We diagonalized the IP actuation matrix. We closed the position control loop for the IP. (This has not happened yet).

  • We installed GAS Filters and IM control loops. (This has not happened yet).

SR3 (priority 2)

  • The bouyancy correction was calculated. It's 1.3 mm.
  • The strategy is rasing the suspension by 1.3 mm and then moving the keystone by 1.3 mm with the fishing rod so the alignment team can work.
  • We measured the optic height using Terada-san's reference. The SR2 optic was at the correct height.
  • We raised suspension using the jacks by an amount calculated with the jack thread: M42 with 2 mm special thread. We rotated the jacks by approximately 180 degrees.
  • Terrence reinstalled OL LED, collimator (1.1 m) and relaigned the OL. Both QPDs were calibrated and expect a range of L: $\pm$332 $\mu m$, P: $\pm$217 $\mu rad$ and Y: $\pm$306 $\mu rad$.
  • OPLEV diagonalization hasn't been done but we expect minimal coupling due to the OPLEV. Strange couplings (due to the geometry of TM) are expected but no conclusive results yet.
  • We removed tape, writing etc on PI and PI items.
  • We calibrated the F0 FR against the readout of the F0 LVDT. We removed the trim masses (110 g). Then we moved the F0 keystone by 1.3 mm downwards.
  • We centered the IP by adjusting the height of the jacks by small amounts. Longitudinal and Transverse positions came good but there was a large yaw (-5 mrad) when the stepper motors were in mid-range. Currently the yaw is -1 mrad and the steppers are using 80% of their range already.
  • The F0 yaw stepper should, in principle, give plus minus 125 mrad range. We should check with a measurement how good this range is (e.g. cables being pulled, components touching, etc.) We can use the vertical laser level as an oplev or the main interferometer beam
  • The front of the optic was cleaned by Hirose-san with Hirata-san's help. Hirata-san and Fujii-kun released the optic. The IP is still locked.

  • F1 fishing rod is not responsive. We have to check the cables.

  • We diagonalized the IP actuation matrix. We closed the position control loop for the IP. (This has not happened yet).

  • We installed GAS Filters and IM control loops. (This has not happened yet).

Talk about problems turning on and off control systems (Terrence and Enzo) From Terrence: Since the PI controller was implemented, the controller keeps accumulator displacements error and converts this error to the output. One problem arose from the mismatch of the control system and the actual hardware. Because the controller output could have a much larger value than the number of counts that can be input to the coil actuators (e.g. the controller says we should input 60000 counts to the actuators but the hardware limits the number of counts), the controller will not function as designed. As a result, the PI would shift to one side (due to insufficient driving force) while the voices coils became saturated at maximum output. Additionally, because the controller is still functioning, the integrator keeps accumulating error and hence the output of the controller keeps increasing but the object is actually stuck. This makes the IP very very unstable when the actuators are saturated.

Give status of oplevs (Terrence and Enzo).

SRM (low priority)

  • Hirose-san, Hirata-san and Fujji-san fixed the RM to the SS and removed the SRM for cleaning.
  • Terrence installed the optical breadboards on the shelfs for the OPLEV; and, assembled the beamsplitter assembly, lens assembly and the folding mirror assembly. The LED box, collimator and the fibre connected were placed on the lower breadboard and the others are placed on the upper one. Still missing steering mirror to complete a tilt setup and a lens for the length OPLEV.

Postponed

  • Raise suspension 3.5 mm on jacks.
  • Check/improve payload alignment and IM OSEMs. Recheck optic pitch with OL as needed.\
  • Adjust F0 keystone trim to give desired height and secure weights in place.
  • Install geophones and arc weights.
  • Center and tune IP.
  • Hook LBB and add just enough ballast to have it bouncing.
  • Wipe inside tank with Vectra-Alpha wipes and IPA.
  • Set up TILT OL.

KAGRA/Subgroups/VIS/TypeB/Minutes (last edited 2022-10-28 10:02:46 by fabian.arellano)