Differences between revisions 66 and 145 (spanning 79 versions)
Revision 66 as of 2016-09-15 13:12:28
Size: 1679
Editor: MarkBarton
Comment:
Revision 145 as of 2017-05-19 13:20:59
Size: 3540
Editor: MarkBarton
Comment:
Deletions are marked like this. Additions are marked like this.
Line 5: Line 5:
 * Type B Past Week Summary
  * Fabian, Mark, Yokogawa-kun and Kuwahara-kun did BS installation at Kamioka:
   * Hung RM.
   * Did permanent routing of RM OSEM cables to IM.
   * Did temporary routing of RM OSEM in-vacuum cables to flange (4 channels).
   * Did semi-permanent routing of all OSEM external cables to satellite amps (10 channels)
   * Did temporary routing of RM OSEMs to PR2 rack (4 channels).
  * Hirata-san:
   * Finished 3D CAD of SR2 and SR3 in tanks, with optical layout included.
   * Started 3D CAD for SRM.
   * Checked flag design.
   * Assembled a bottom filter (ongoing).
   * Cleaned maraging rods.
 * Type B ongoing issues
 * Longer term to-do list
  * Do Inventor assembly for SRx in chamber and on assembly frame (Hirata) - SR2/SR3 DONE, SRM ongoing.
   * Part "disk security" top has to be modified - screw positions do not match.
  * Write more of payload assembly procedure (Fabian) - ONGOING
  * Write more of BS Assembly Procedure [[http://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/private/DocDB/ShowDocument?docid=4235| E1504235]], [[https://onedrive.live.com/redir?resid=D5CCFA70A378E0D0!195&authkey=!AM_usynuo9QI57g&ithint=folder,webloc|E1504235 draft]] (Mark) - ONGOING
  * Lower breadboard installation to be incorporated into the procedure document.
  * Work on BS simulation (Fabian)
  * Do BS Simulink model (Mark, Kokeyama)
  * Do 2D drawings of SR2 parts (Hirata)
  * Redesign SRx IM wire clamps for larger prisms, remachined RMs
  * Order SRM/PRM parts (Hirata/Shoda)
  * Order SRx fasteners (Hirata)
=== Type B (Mark) ===
==== Past week report ====
At Kamioka (Mark, Fabian, Enzo, Perry, Hirata-san):

 * We cleared space for the PR2 team to remove a bellows from their tank.
 * We installed safety bars on the pillars near the assembly frame at about waist height for someone on the tall ladder. We reinforced the clamps with cable ties.
 * We bridged a gap in the second floor on the -X side of the SF2 tank with spare floor panels.
 * We removed the PI from the assembly frame.
 * We encountered a problem with the PI-SF rod jamming in the SF. We finally got it out by clamping a pair of vice grips to the rod and hammering. We found that the receptacle part was the right size (7.0 mm) but had been deformed around the edge. Hirata-san used a knife and sandpaper to lean up the edge and then ultrasonically cleaned it.
 * We removed the LLB blade units from the PI, removed the blades from the clamps and sent the blades away for more rework to fix the length problem. Fortunately the tab section at the tip is fairly long, so we can just add a second hole further from the end.
 * We tested the SR fishing rod again, but it would only go up, not down. We found that reseting the driver fixed it, but we also moved the driver boxes into the cleanbooth to reduce the length of the motor cables. (To support the drivers, we had to run some long DC and LAN cables.)
 * We adjusted the limit nut on the SF fishing rod to increase the range.
 * We debugged an issue with the SF keystone sitting lower than previously and found we had accidentally left two eyebolts on top of the BF. We retrimmed the BF/... section to reset the keystone to nominal (65.5 mm) with the fishing rod at mid-range.
 * We removed one segment of the Cu ring on the SF cap and reconfigured the other two to be symmetrical.
 * Fabian designed a layout for the SF damper ring magnets that would work with the modified Cu ring, and placed the magnets with the template. The poles of the magnets were not on the expected faces so we had to stand the magnets up, with the 12x12 faces sideways and the 10x12 mm pole faces up/down. We will need to raise the magnet ring by 2 mm to allow for the extra height.
 * Hirata-san made an adapter cable for the PI vertical LVDT to let it connect to a standard Type 1 cable.
 * Enzo made a PI yaw/vertical stepper adapter cable and a trial geophone descrambler cable (one of three).
 * We placed the geophones on the PI but discovered we didn't have some mounting brackets called out in the 3D CAD.
 * Fabian added the remaining cable clamps to the PI.
 * We found that part of the problem with the SF LVDT was that the actuation had not been enabled for SF or F0 in the real-time model. We fixed the model and are now able to drive the LVDT actuator and see input at the LVDT sensor. However there is apparently a lot of coupling directly from output to input (presumably from transformer action between the sensing and actuation coils), so we're investigating.

==== Plan for coming weeks ====
For more detail, see [[KAGRA/Subgroups/VIS/TypeB/ToDo]].

Weeks of 5/22, 5/29:
 * Retest SF stepper every day, to see if problems recur.
 * Find/install geophone adapter plates or improvise replacement.
 * Reinstall PI, this time with rods and damper ring.
 * Reinstall PI-SF rod, this time with hex cable clamp.
 * Cable/test PI geophones LVDTs and steppers.
 * Reinstall LBB blade units.
Line 33: Line 38:
 

Scraps of text for incorporation in the VIS Meeting Minutes

KAGRA/Subgroups/VIS/MeetingNAOJ

Type B (Mark)

Past week report

At Kamioka (Mark, Fabian, Enzo, Perry, Hirata-san):

  • We cleared space for the PR2 team to remove a bellows from their tank.
  • We installed safety bars on the pillars near the assembly frame at about waist height for someone on the tall ladder. We reinforced the clamps with cable ties.
  • We bridged a gap in the second floor on the -X side of the SF2 tank with spare floor panels.
  • We removed the PI from the assembly frame.
  • We encountered a problem with the PI-SF rod jamming in the SF. We finally got it out by clamping a pair of vice grips to the rod and hammering. We found that the receptacle part was the right size (7.0 mm) but had been deformed around the edge. Hirata-san used a knife and sandpaper to lean up the edge and then ultrasonically cleaned it.
  • We removed the LLB blade units from the PI, removed the blades from the clamps and sent the blades away for more rework to fix the length problem. Fortunately the tab section at the tip is fairly long, so we can just add a second hole further from the end.
  • We tested the SR fishing rod again, but it would only go up, not down. We found that reseting the driver fixed it, but we also moved the driver boxes into the cleanbooth to reduce the length of the motor cables. (To support the drivers, we had to run some long DC and LAN cables.)
  • We adjusted the limit nut on the SF fishing rod to increase the range.
  • We debugged an issue with the SF keystone sitting lower than previously and found we had accidentally left two eyebolts on top of the BF. We retrimmed the BF/... section to reset the keystone to nominal (65.5 mm) with the fishing rod at mid-range.
  • We removed one segment of the Cu ring on the SF cap and reconfigured the other two to be symmetrical.
  • Fabian designed a layout for the SF damper ring magnets that would work with the modified Cu ring, and placed the magnets with the template. The poles of the magnets were not on the expected faces so we had to stand the magnets up, with the 12x12 faces sideways and the 10x12 mm pole faces up/down. We will need to raise the magnet ring by 2 mm to allow for the extra height.
  • Hirata-san made an adapter cable for the PI vertical LVDT to let it connect to a standard Type 1 cable.
  • Enzo made a PI yaw/vertical stepper adapter cable and a trial geophone descrambler cable (one of three).
  • We placed the geophones on the PI but discovered we didn't have some mounting brackets called out in the 3D CAD.
  • Fabian added the remaining cable clamps to the PI.
  • We found that part of the problem with the SF LVDT was that the actuation had not been enabled for SF or F0 in the real-time model. We fixed the model and are now able to drive the LVDT actuator and see input at the LVDT sensor. However there is apparently a lot of coupling directly from output to input (presumably from transformer action between the sensing and actuation coils), so we're investigating.

Plan for coming weeks

For more detail, see KAGRA/Subgroups/VIS/TypeB/ToDo.

Weeks of 5/22, 5/29:

  • Retest SF stepper every day, to see if problems recur.
  • Find/install geophone adapter plates or improvise replacement.
  • Reinstall PI, this time with rods and damper ring.
  • Reinstall PI-SF rod, this time with hex cable clamp.
  • Cable/test PI geophones LVDTs and steppers.
  • Reinstall LBB blade units.

KAGRA/Subgroups/VIS/TypeB/Minutes (last edited 2022-10-28 10:02:46 by fabian.arellano)