Monolithic Accelerometers on the BS Inverted Pendulum: blending issues

NAOJ VIS Meeting, January 22nd, 2016

J.V. van Heijningen (jvnheijn@nikhef.nl)

Accelerometers now on IP

Accelerometers need calibration

Takanori used the following scheme

He used the geophone specification as geophone calibration, so he was able to use it after geometrical adding of the 3 geophones. I think there's danger in doing that as the L4Cs can differ from specifications.

ef

Takanori combined blend and calibration

This is what I do at Virgo now

Not possible here, no common position

Red rectangles = LVDT pos.

As the angle with respect to x and y (x and z for Virgo) differs for 'co-located' ACC and LVDT, I can't blend before geometric adding

We could model what high pass filter (i.e. roll-on freq) would work for what blending or find a way to get ACCs and LVDTs truly co-located

Next week is my final week here

The dummy masses are expected end of next week, so I'm shifting goal of my project to fixing everything here so that I can work on it from Amsterdam

In that view, it would be nice to have someone here who understands the project and what I'm trying to do for local assistance

I know this project doesn't have the biggest priority, but I think it's also in (b)KAGRA's interest to try and get some results out of my efforts

Right now, Takanori's approach, I think, won't give you optimal low frequency control, which has effects on the rms displacement of the mirrors

