Study on the Vertical Separation between Suspension Points & Center of Mass (in Type-B Suspension System, for Recycling Mirrors)

Takanori Sekiguchi

1. Payload Part (IM+RM+Mirror)

Let us define a "default design" : dyl_IM=3 mm dyu_TM=dyu_RM=dyl_TM=dyl_TM=0 mm dz_RM=10 mm, dz_TM=2mm

wire thickness (diameters): dw_IM=0.80 mm, dw_RM=0.60 mm, dw_TM=0.20mm

wire length: lw_IM=lw_RM=lw_TM=500 mm

Note that, bending elasticity of a wire is not taken into account. (i.e. suspension point = bending point of the wire) The following plots are the transfer functions, from the top motion (in horizontal direction) to the mirror pitch motion (z_ground \rightarrow tx_mirror).

(1) dyl_IM dependence

(3) dyu_TM dependence

(5)dyl_TM dependence

(6) dz_TM dependence

(7) dz_RM dependence

(8) Vertical position of CoM of IM

Discussion

Sensitive parts to the longitudinal-pitch transfer function are:

- * Upper suspension point @ IM
- * Suspension points @ Mirror

These parts must be carefully designed and tuned.

Due to the elasticity of wires, the suspension point and the effective bending point were separated by Sqrt[EI/T]. (E: Young's modulus, I: second moment of area, T: tension) After this compensation, the default design will be:

dyl_IM=-0.2 mm dyu_TM=dyl_TM =-1.1mm dyu_RM=dyl_TM=-9.3 mm

2. IRM suspension

Default design: dyl_F2=11.5 mm, dyu_IM=8.2mm, dyl_IM=3.0 mm, dyu_IRM=dyl_IRM =0 mm

(Note: suspension point = bending point of the wire)

IRM is suspended by three wires.

The horizontal distance between a wire and the center of IRM is 18 cm.

(In the top view, the suspension points are on the corners of a regular triangle)

The following plots are the transfer functions, from the top motion (in horizontal direction) to the mirror pitch motion (z_ground \rightarrow tx_mirror).

(1) dyu_IRM dependence

(2) dyl_IRM dependence

The following plots are the frequency response of the mirror pitch motion, when torque is exerted to IM from actuators on IRM (Tx_IM - Tx_IRM \rightarrow tx_mirror).

(2) dyl_IRM dependence

Discussion

Changes in vertical positions of the suspension points on the IRM suspension do not change the frequency response of the system.

3. GAS Filters

