
aLIGO Guardian
Overview and Coder’s Introduction

Jameson Graef Rollins

LIGO-G1400016

Contents

1 Conceptual Overview
2 Code syntax and behavior

states and edges
jump transitions
goto states and redirects
auxiliary code
state indices
requestable states

3 EPICS channel access: Ezca
ezca

LIGOFilter
LIGOFilterManager

4 Built-in tools and features
timers
state decorators

5 The NodeManager interface
6 The core programs

guardian
guardmedm
guardutil
guardctrl/guardlog

2/60

Introduction

Guardian is an automation platform developed by the Advanced LIGO
Project.

The objective of Guardian is to provide:

a framework for complete, robust automation of the LIGO interferometers and
all subsystems.
an interface that facilitates the unique commissioning process.
useful diagnostics and coherent tracking of the full state of the instrument to
aid detector characterization.

Guardian is now mature, and in full control of both aLIGO detectors.

3/60

Conceptual Overview

Guardian design concept

Guardian is a hierarchical,
distributed, state machine.

Individual automaton nodes oversee well
defined sub-domains of the full system.

Beckhoff

fa
st

 c
on

tr
ol

p
h

ys
ic

a
l

p
la

n
t

d
ig

it
a

l
IO

re
a

l-
ti

m
e

c
o

n
tr

o
l

EtherCat PCIe

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

s
u

p
e

rv
is

o
ry

c
o

n
tr

o
l

PSL SUSSEI ISCSEI

Guardian

ETM

IFO

SUS

ITM

manager node

device node EPICS

5/60

Guardian design concept

Each node is a separate daemon
process.

They are essentially state machine
execution engines. They load system
modules that describe the state graph
of the system and the code to be
executed during each state. They run
continuously, responding to system
changes and user input.

Beckhoff

fa
st

 c
on

tr
ol

p
h

ys
ic

a
l

p
la

n
t

d
ig

it
a

l
IO

re
a

l-
ti

m
e

c
o

n
tr

o
l

EtherCat PCIe

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

s
u

p
e

rv
is

o
ry

c
o

n
tr

o
l

PSL SUSSEI ISCSEI

Guardian

ETM

IFO

SUS

ITM

manager node

device node EPICS

6/60

Guardian design concept

A hierarchy of nodes control the full
interferometer.

Upper-level manager nodes control
lower-level subordinate nodes, with
device nodes talking directly to front
end hardware.

Beckhoff

fa
st

 c
on

tr
ol

p
h

ys
ic

a
l

p
la

n
t

d
ig

it
a

l
IO

re
a

l-
ti

m
e

c
o

n
tr

o
l

EtherCat PCIe

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

s
u

p
e

rv
is

o
ry

c
o

n
tr

o
l

PSL SUSSEI ISCSEI

Guardian

ETM

IFO

SUS

ITM

manager node

device node EPICS

7/60

Guardian design concept

All communication is handled by EPICS.
EPICS handles communication:

between nodes.
between nodes and the real-time
front ends.
between operator interfaces and the
nodes.
for node status data acquisition.

Beckhoff

fa
st

 c
on

tr
ol

p
h

ys
ic

a
l

p
la

n
t

d
ig

it
a

l
IO

re
a

l-
ti

m
e

c
o

n
tr

o
l

EtherCat PCIe

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

s
u

p
e

rv
is

o
ry

c
o

n
tr

o
l

PSL SUSSEI ISCSEI

Guardian

ETM

IFO

SUS

ITM

manager node

device node EPICS

8/60

http://www.aps.anl.gov/epics/

Guardian design concept: state graphs

Each node executes a state graph for its system.

fa
st

 c
on

tr
ol

re
a

l-
ti

m
e

c
o

n
tr

o
l

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

s
u

p
e

rv
is

o
ry

c
o

n
tr

o
l

PSL SUSSEI ISCSEI

Guardian

ETM

IFO

SUS

ITM

manager node

device node

RESET

SAFE

MISALIGNED

ALIGNING

UNALIGNING

ENABLE_ALL

FULLY_ENABLED

DISABLE

MISALIGNING

ALIGNED

MASTERSWITCH_ON

ENGAGE_DAMPING

DAMPED

INIT

TRIPPED

9/60

Guardian design concept: path

The state graphs describe the accessible states of the
system, and the allowable transitions between states.

The node accepts commands in the form of a state
request.

Guardian then calculates the path from the current state
to the requested state, and executes all states in the path
in sequence.

10/60

RESET

SAFE

MISALIGNED

ALIGNING

UNALIGNING

ENABLE_ALL

FULLY_ENABLED

DISABLE

MISALIGNING

ALIGNED

MASTERSWITCH_ON

ENGAGE_DAMPING

DAMPED

INIT

TRIPPED

Guardian design concept: path

The state graphs describe the accessible states of the
system, and the allowable transitions between states.

The node accepts commands in the form of a state
request.

Guardian then calculates the path from the current state
to the requested state, and executes all states in the path
in sequence.

11/60

RESET

SAFE

MISALIGNED

ALIGNING

UNALIGNING

ENABLE_ALL

FULLY_ENABLED

DISABLE

MISALIGNING

ALIGNED

MASTERSWITCH_ON

ENGAGE_DAMPING

DAMPED

INIT

TRIPPED

Guardian design concept: path

The state graphs describe the accessible states of the
system, and the allowable transitions between states.

The node accepts commands in the form of a state
request.

Guardian then calculates the path from the current state
to the requested state, and executes all states in the path
in sequence.

12/60

ENABLE_ALL

RESET

SAFE

MISALIGNED

ALIGNING

UNALIGNING

ENABLE_ALL

FULLY_ENABLED

DISABLE

MISALIGNING

ALIGNED

MASTERSWITCH_ON

ENGAGE_DAMPING

DAMPED

INIT

TRIPPED

Guardian design concept: jump

States may return a jump target, which is the name of
another state to immediately “jump” to.

This interrupts the current path in order to respond to
changes in the system.

After the jump, guardian recalculates the path back to
the original request, and continues.

13/60

ENABLE_ALL

RESET

SAFE

MISALIGNED

ALIGNING

UNALIGNING

ENABLE_ALL

FULLY_ENABLED

DISABLE

MISALIGNING

ALIGNED

MASTERSWITCH_ON

ENGAGE_DAMPING

DAMPED

INIT

TRIPPED

Guardian design concept: finite state machine

Guardian is a finite state machine (FSM): each state is
a logically distinct block of code.

The FSM design forces all persistent process variables to
be external to the code, in this case stored in EPICS
records that are fully recorded by the data acquisition
system.

The full state of the automation system at any point in
time can then be completely reconstructed from data
on disk.

14/60

RESET

SAFE

MISALIGNED

ALIGNING

UNALIGNING

ENABLE_ALL

FULLY_ENABLED

DISABLE

MISALIGNING

ALIGNED

MASTERSWITCH_ON

ENGAGE_DAMPING

DAMPED

INIT

TRIPPED

Guardian design concept: states

Guardian nodes are soft real-time systems that employ
a timed run loop to execute the state code.

The state code can take as long as it needs to execute
(although the faster it executes the more responsive
guardian will be).

When the state completes guardian transitions to the
next state in the path.

15/60

main run

STATE

RESET

SAFE

MISALIGNED

ALIGNING

UNALIGNING

ENABLE_ALL

FULLY_ENABLED

DISABLE

MISALIGNING

ALIGNED

MASTERSWITCH_ON

ENGAGE_DAMPING

DAMPED

INIT

TRIPPED

Guardian design concept: states

There are two state methods (i.e.
functions):

main() executed once
immediately upon
entering state.

run() executed in a loop.
Used to continuously
check for state
completion conditions.

There is otherwise no difference in
how the two methods are execute, or
how their return status is
interpreted.

16/60

STATE

runmain

Guardian design concept: states

If either method returns None
(default) or False, the run()
method is executed again.

If either method returns True the
state completes and guardian
transitions to the next state. This is
known as an edge transition.

17/60

STATE

True

False
runmain

Guardian design concept: states

NOTE: If the state is equal to the
REQUEST state, then the run
function will continue to
execute even if it returns True.

18/60

STATE

True

False
or

STATE == REQUEST

main run

Guardian design concept: states

Either method can return the name
of a state to initiate a jump
transition.

19/60

STATE

'DOWN' 'DOWN'

main run

Code syntax and behavior

System description modules

The core guardian code are the
system description modules.

These are standard python
modules, that include all state
definitions, any additional
supporting code, and the edge
definitions for connecting states.

from guardian import GuardState

prefix = ’SUS -MC2 ’

class SAFE(GuardState):
...

class DAMPED (GuardState):
...

edges = [
(’SAFE ’, ’DAMPED ’),
]

21/60

State definition

States are python classes that
inherit from the GuardState
base class.

Each GuardState definition
includes the two state methods
that are overriden by the user to
program state behavior.

class DAMPED (GuardState):

main method executed once
def main(self):

...

run method executed in a loop
def run(self):

...

22/60

State execution model

The execution model of a state is
a straightforward run loop:

state = system . STATE_NAME ()

init = True
while True:

if init:
method = state.main
init = False

else:
method = state.run

status = method ()

if status :
break

23/60

Edges

Directed edges between states
are specified in the edges
variable as a list of tuples of the
form:

(’FROM_STATE’, ’TO_STATE’)

edges = [
(’INIT ’, ’SAFE ’),
(’SAFE ’, ’MASTERSWITCH_ON ’),
(’MASTERSWITCH_ON ’, ’DAMPED ’),
(’DAMPED ’, ’ALIGNING ’),
(’ALIGNING ’, ’ALIGNED ’),
]

24/60

Jump transitions

A jump transition is initiated
by a state method returning a
string name of the intended
jump target.

Guardian immediately
transitions (“jumps”) to the
specified target.

class ALIGNED (GuardState):
def run(self):

if is_watchdog_tripped ():
return ’TRIPPED ’

25/60

Goto states

A state can be specified as a goto state for which guardian will automatically
assign edges coming from every other state in the graph.

Goto states are specified using
the goto flag in the state
definition:

class SAFE(GuardState):
goto = True
def main(self):

...

26/60

Goto redirects

Goto states have an additional important behavior:

If a goto state appears in the path, execution of the current state
will be immediately terminated and the system will move directly
to the goto state.

This is called a redirect. Redirects are important for responding quickly to
changes in the plant.

NOTE: When a redirect is initiated, the state is given 1 second to return from the
currently executing method. If the state does not return in the allotted time, the
state will be forcibly terminated, which causes all EPICS connections to be
severed and re-established. This should be avoided.

→ avoid blocking calls in state methods!
27/60

Redirect protection

States can be protected from redirects by
setting the redirect to False. When
this flag is set, the redirect will be
ignored until the start returns True.

class TRIPPED (GuardState):
redirect = False
def main(self):

...

Redirect protection is useful for any state that should never be left until certain
conditions are met, such as WATCHDOG TRIP states that have to wait for
operators to clear watchdogs.

28/60

Auxiliary code and external libraries

Modules can include arbitrary other
function/class/variable definitions.

def helper_function ():
...

class DAMPED (GuardState):
def main(self):

helper_function ()

Modules can also import code or objects
from other modules. For instance the
SUS_MC2.py system description imports
states from a base SUS.py suspension
module:

from SUS import *

29/60

State indices

The DAQ system can only record numeric data in the frames. That means it can
not record state names. To get around this problem, all states must have a
numeric index.

To manually specify an index for
a state, use the index flag:

class ALIGNING (GuardState):
index = 56
def main(self):

...

If an index is not specified, then one will be assigned automatically from the
negative integers (e.g. index = -15).

Indices are also used to order states in various contexts (such as on MEDM
displays).

30/60

Requestable states

All states are requestable by default. This means that they will show up in the
MEDM REQUEST menu (more below).

However, many states may be transition states, which means they do only
transitional things and it is not intended that the system stop in them.

States can be made
non-requestable by setting the
state request flag to False:

class ALIGNING (GuardState):
request = False
def main(self):

...

31/60

EPICS channel access: Ezca

EPICS channel access: Ezca

All EPICS channel access is done through the custom LIGO Ezca interface. It is
specifically designed to interacting with the CDS fast front-end systems. It has
methods for reading and writing channels, as well as interacting with standard
filter modules, etc.

It is designed to be robust, and will throw exceptions if channels do not connect or
aren’t able to read or write values for whatever reason.

33/60

EPICS channel access: Ezca

The ezca object is pre-initialized by guardian. It is available within any
function/method call anywhere in the system description module:

if ezca[’IMC - MC2_TRANS_SUM_INMON ’] >= 150:
...

ezca[’SUS - MC2_M2_LOCK_L_GAIN ’] = 10

The “<IFO>:” prefix will always be filled in automatically, and therefore doesn’t
need to be specified.

34/60

Ezca prefixes

If a prefix is specified in the system description module, it will be combined with
the local IFO variable to produce a proper channel prefix that is then passed to
the Ezca object upon initialization. E.g.:

prefix = ’SUS -MC2 ’

becomes:

ezca = Ezca(’L1:SUS -MC2_ ’)

Further ezca calls then only need to reference the rest of the channel name:

ezca[’M2_LOCK_L_GAIN ’] = 10

35/60

Ezca methods

ezca includes the usual read/write methods (accessible via two forms):

gain = ezca.read(’M2_LOCK_L_GAIN ’)
gain = ezca[’M2_LOCK_L_GAIN ’]

ezca.write(’M2_LOCK_L_GAIN ’, 10)
ezca[’M2_LOCK_L_GAIN ’] = 10

There’s also a switch method for dealing with CDS standard filter modules
(SFM):

ezca. switch (’M2_LOCK_L ’, ’FM1 ’, ’ON’)

36/60

LIGOFilter SFM class

Ezca includes a LIGOFilter class with more fine-grained methods:

filter = ezca. get_filter (’M2_LOCK_L ’)

filter . turn_on (’FM1 ’)
filter . is_engaged (’FM1 ’)
filter . turn_off (’FM3 ’)
filter . is_off (’FM3 ’)
filter . all_off ()
filter . only_on (’INPUT ’, ’OUTPUT ’, ’FM2 ’)
filter . ramp_gain (10, ramp_time =5)
filter . is_gain_ramping ()

37/60

LIGOFilterManager

There is also a LIGOFilterManager class for acting on multiple filter modules with
the same methods simultaneously:

filters = ezca. get_filters (
[’M2_LOCK_P ’, ’M2_LOCK_Y ’])

def engage_boosts (ligo_filter):
ligo_filter . turn_on (’FM8 ’, ’FM9 ’)
ligo_filter . ramp_gain (10, ramp_time =5)

filters . all_do (engage_boosts)

38/60

Built-in tools and features

Timers

self.timer[’mytimer ’] = 2

Timers can be used to measure off a specific amounts of time in a state. They can
be used to wait for something to happen if it’s completion can’t be tested for
directly.

State timers are superior to blocking time.sleep() calls, since they don’t block
guardian execution, allowing guardian to respond to changes more easily. See
section on redirects above.

40/60

Timers

GuardState has a built-in “timer manager”. To start a timer, give the timer
manager an identifier for the timer and a length of time in seconds:

def main(self):
do_something ()
self.timer[’mytimer ’] = 2

The timer will immediately start counting down.

When queried, the timer will return False if it has not yet reached zero, and True
after it has. The status of the timer can then be checked in the state run loop:

def run(self):
if self.timer[’mytimer ’]:

return True

41/60

State method decorators

Python decorators can be used to wrap state methods with common code,
thereby simplifying the main logic of the method:

class _ENGAGE_ISO_BOOST (GuardState):

@dec. watchdog_is_not_tripped
@dec. masterswitch_is_on
@dec. damping_loops_are_in_preferred_state
@dec. damping_loops_have_correct_gain
@dec. isolation_loops_are_in_preferred_sta
@dec. isolation_loops_have_correct_gain (al
def main(self):

...

Decorators should be used to factor out common code that is not unique to the
state at hand.

42/60

State method decorators

Guardian includes a special GuardStateDecorator class specifically designed for
wrapping state methods:

class assert_full_lock (GuardStateDecorator):
def pre_exec (self):

if not MC_is_locked ():
return ’LOCKLOSS ’

class LOCKED (GuardState):
@ assert_full_lock
def main(self):

...

43/60

The NodeManager interface

NodeManager

The NodeManager object is the interface for one guardian node to “manage” other
nodes.

NodeManager has methods for fully controlling subordinate nodes, as well as
monitoring their state, status, and progress towards achieving requests.

45/60

NodeManager initialization

The NodeManager is instantiated in the main body of the module by passing it a
list of nodes to be managed:

from guardian import NodeManager

nodes = NodeManager ([’SUS_MC1 ’, ’SUS_MC2 ’, ’SUS_MC3 ’])

Guardian will initialize connections to the nodes automatically.

46/60

Node requests and states

Requests can be made of the nodes, and their progress can be monitored by
inspecting their state:

set the request
nodes[’SUS_MC2 ’] = ’ALIGNED ’

check the current state
if nodes[’SUS_MC2 ’] == ’ALIGNED ’:

...

The arrived property is True if all nodes have arrived at their requested states:

if nodes. arrived :
...

47/60

Node MANAGED state

If the manager is going to be setting the requests of the subordinates, it should set
the nodes to be in MANAGED mode in the INIT state:

class INIT(GuardState):
def main(self):

nodes. set_managed ()
...

In MANAGED mode, nodes don’t automatically recover after jump transitions.
This is called a stall. This allows the manager to see that there’s been a jump and
coordinate it’s recovery as needed.

48/60

Reviving stalled nodes

If a managed node has stalled, i.e. experienced a jump transition, there are two
ways to revive it:

Issue a new request:

if nodes[’SUS_MC2 ’]. stalled :
nodes[’SUS_MC2 ’] = ’ALIGNED ’

or issue a revive command, which re-requests the last requested state:

for node in nodes. get_stalled_nodes ():
node. revive ()

49/60

Nodes checker decorator

The nodes.checker method returns a decorator that looks for faults in the nodes.
It will report if there are connection errors, node errors, notifications, or if the
node mode has been changed:

@nodes. checker ()
def main(self):

...

It only reports issues, unless specifically told to jump if there is a fault:

@nodes. checker (fail_return =’DOWN ’)
def main(self):

...

The node checker should be run in all states.
50/60

The core programs

Guardian programs

Guardian includes five programs:
guardian

Core guardian daemon program. Executes system state machines, or
single states or graph paths.

guardmedm
Launch MEDM control interface for a Guardian node.

guardutil
Utility program for displaying system information.

guardctrl
Interface to the site Guardian infrastructure, for controlling nodes
and accessing logs.

guardlog
Interface to view node logs.

52/60

Guardian system identifiers

All programs accept system description module names, e.g. ’SUS_MC2’, as their
primary argument:

controls 0$ guardlog SUS_MC2

They look for the modules in Guardian-specific USERAPPS paths:

$USERAPPS/<subsystem >/<site>/guardian

$USERAPPS/<subsystem >/common/guardian

53/60

guardian

The core guardian program is the guardian daemon. It loads the system module
and executes the state machine described therein. It has three modes of operation:

guardian [<options >] <module>

guardian [<options >] <module> <state>

guardian [<options >] <module> <state> <request>

guardian [<options >] [−i <module >]

54/60

guardian: daemon mode

guardian [<options >] <module>

When given the name of a system description module, guardian loads the module
and starts executing the state machine described therein.

It logs to stdout, and is controlled by the guardian medm interface (see guardmedm
below).

Usually this mode would only be run through the main site supervision
infrastructure (see guardctrl below), but it can be run from the command line as
well.

55/60

guardian: single states and paths

If guardian is called with a single state argument, the single state code is executed
it until it completes, at which point guardian exits.

guardian [<options >] <module> <state>

If two states arguments are specified, it is interpreted as a path in the state graph.
Guardian attempts to execute the path, and exits when the request state
completes (or an error or jump is encountered).

guardian [<options >] <module> <state> <request>

The daemon EPICS interface is not initialized in these modes.

56/60

guardian: interactive shell

guardian [<options >] [−i <module >]

If no argument is given (or the “interactive” flag is specified) a pre-configured
interactive shell is launched:
controls 0$ guardian

−−−−−−−−−−−−−−−−−−−−
aLIGO Guardian Shell

−−−−−−−−−−−−−−−−−−−−
prefix: L1:

In [1]:

Useful for testing commands, doing math, looking at documentation, etc.:
In [1]: ezca[’SUS−MC2_M2_LOCK_L_GAIN ’] ∗ 6
Out[1]: 18

57/60

guardmedm

guardmedm launches the medm control
interface to a specific guardian daemon:

controls 0$ guardmedm IFO_IMC

It is used for viewing daemon status,
controlling the daemon (e.g. requesting
states, pausing daemon, reloading code,
etc.), accessing logs, displaying system
graph, etc.

58/60

guardutil

guardutil has useful functions for developing systems.

controls 0$ guardutil graph SUS_MC2

Useful tools for for understanding and debugging systems,
has lots of useful subcommands:

print system info (print, states, edges)
draws system graphs (graph)
view source code (files, source)
edit system code (edit)
plot state of node around a specified time (plot)

59/60

RESET

SAFE

MISALIGNED

ALIGNING

UNALIGNING

ENABLE_ALL

FULLY_ENABLED

DISABLE

MISALIGNING

ALIGNED

MASTERSWITCH_ON

ENGAGE_DAMPING

DAMPED

INIT

TRIPPED

guardctrl

guardctrl is the main interface to the site infrastructure. It is used for controlling
nodes running on the site guardian machines ({h1,l1}guardian0)

From this interface, supervised nodes can be created, started, stopped, restarted,
etc.:

controls 0$ guardctrl create SUS_MC2

controls 0$ guardctrl start SUS_MC2

controls 0$ guardctrl stop SUS_MC2

Logs can be viewed with the guardlog command:

controls 0$ guardlog SUS_MC2

60/60

	Conceptual Overview
	Code syntax and behavior
	states and edges
	jump transitions
	goto states and redirects
	auxiliary code
	state indices
	requestable states

	EPICS channel access: Ezca
	ezca
	LIGOFilter
	LIGOFilterManager

	Built-in tools and features
	timers
	state decorators

	The NodeManager interface
	The core programs
	guardian
	guardmedm
	guardutil
	guardctrl/guardlog

