Geophysics interferometer (GIF)

Tasks

1. Construction of two baseline-monitor interferometers (1.5km) along LCGT

2. Arrangement of sensors and benchmarks for monitoring environmental condition

Optical layout of a geophysics interferometer: Baseline 1500m Asymmetric Michelson interferometer with two retroreflectors A 5-m input baseline Iodine-stabilized 532nm laser φ400mm vacuum tubes

Essentially based on the current 100-m IFO system.

Optical layout

Optical parameters for 1500m baseline: Beam diameter (waist) 32mm Beam diameter (max.) 45mm Visibility 0.7

Diameter of 400mm is required for vacuum tubes.

Optical layout around the front chamber

Compatible with the φ 4500 tunnel. Separation from the KAGRA duct (φ 800) is secured.

GIF BS Tank Layout

Jun. 11, 2011: Drawn by A. Takamori

Iodine-stabilized system

Locked to a saturated absorption line Frequency stability $dv/v \sim 10^{-13}$

Layout of vacuum system and benchmarks

Strain sensitivity ~10⁻¹³ Baseline 1.5km x 2

Chamber diameter 1.0m Chamber height 1.0m installed on a granite base 1.2m x 1.2m Vacuum pressure ~10⁻⁴Pa

Granite benchmarks 0.6m x 0.6m,

- 200-m separation used for
- 1. reference of vacuum system installation
- 2. monitoring tunnel deformation
- 3. research on standard of length

Granite base of the 100-m IFO

Layout of vacuum system and benchmarks

X-Front (input)

X-Middle (seismometer) X-End (reflector)

GWダクト 0.8m 地物ダクトゆ0.4m X フロント14 (Y フロント26は左右対称) GWダクトゆ0.8m GWダクトゆ0.8m Xエンド17 (Yエンド27は左右対称) 地物ダクトゆ0.4m 地物ダクトゆ0.4m -2 縁切 180 縁切 地震計拡幅部 (は左右対称) 花崗岩 (真空タンク) □1200×H700 縁切 (ベンチマ= □600×H900 (マーク) 縁切 □1400×H700 縁切 □800×H950 ▲ BSより 330m 縁切 □1000×H700 花崗岩 (光学 日800 縁切 日100 縁切 00m こ変更 4500 花崗岩 (光学) 口800 縁切 口1000 1000 BSより1000 BSより 330m+150 花崗岩 (光学う 口800 緣切 口1000 禄切 ロ700×H200 緣切 []1400×H700 X:排気装置拡張部 (Yは左右対称)」 355 T1800 × H700 縁切 □1000×H700 200m

So rapid fringe change ... even 1kHz sampling is not enough for fringe detection. For 1500-m GIF... requiring higher sampling rate for DAQs (5kHz~50kHz)

Strain step associated with Tohoku earthquake on Mar.11, 2011

Data Acquisition system (GIF-DAQ)

Requirements:

>>Two systems for both interferometers

>>Synchronized sampling and time stamps
(Standard time, 1PPS, 10MHz clock)

Functions:

>>Fringe data acquisition (5k-50kHz x 4ch for each IF)
>>Laser stabilization control (relock, remote control)
>Data acquisition of environment-monitor sensors
>Data sharing

GIF-DAQ

GIF data are acquired by PXIs and stored on RAIDs through LAN. Two PXIs are synchronized with the GPS clock.

GIF-DAQ

Synchronization with the GPS clock by PXI-5922.

Data acquisition system for GIF(geophysics interferometer)

 GIF-DAQ (two PXI systems) acquires GIF signals and stores the data on RAIDs through LAN. A/Ds are 24-bit 50kS/s, and are synchronized with GPS. The system also includes relay switches for controlling laser locking, etc.

High end (absolute) Low end (relative, low resolution) Thermometer $\delta t \sim 0.1 \text{deg}$ δt~ 1deg voltage **USB** voltage **Barometer** δp~ 0.1hPa δp~ 1hPa F4711 DIGITAL BAROMETON HOOLS YOKOGAWA . voltage/RS232c voltage

Accelerometer

ICD parameters (preliminary)

Sensor	range	resolution	response
Thermometer(abs.)	-50–50deg.	0.15deg.	DC-0.1Hz
Thermometer(rel.)	-50–100deg.	1deg.	DC-0.1Hz
Hygrometer	0-100%	3%	DC-0.1Hz
Barometer (abs.)	850–1050hPa	0.15hPa	DC-0.1Hz
Barometer (rel.)	TBD	TBD	TBD
Accelerometer (abs.)	-20-20m/s ²	1.e-5m/s ²	DC-500Hz
Accelerometer (rel.)	-50-50m/s ²	1.e-2m/s ²	1-5kHz
Seismometer	1.5e-2m/s	1.e-9m/s	4m-200Hz
Particlemeter	TBD	TBD	TBD
Microphone	TBD	TBD	TBD
EM sensor	TBD	TBD	TBD

			TU	FA	VA	VI	CR	IF	DG	EL	IO	LA	AO	GI	DA
barometer	TBD	barometer resolution		FA	VA	VI		IF	DG					GI	DA
hygrometer	TBD	hygrometer resolutio		FA	VA	VI		IF	DG					GI	DA
thermometer	TBD	thermometer resoluti		FA		VI		IF	DG					GI	DA
microphone	TBD	microphone resolutio		FA		VI		IF	DG					GI	DA
particlemeter	TBD	particle meter resol	TU	FA	VA	VI		IF	DG					GI	DA
accelerometer	TBD	accelerometer resolu				VI		IF	DG					GI	DA
seismometer	TBD	seismometer resoluti	TU	FA		VI		IF	DG					GI	DA

Data acquisition system for EM (environmental monitor)

1st phase (before iKAGRA)

EM-DAQ (cRIO systems) acquires EM signals and stores the data on RAIDs through LAN. The system accepts voltage and serial (RS232c) signals. Typical configuration of a cRIO system includes A/Ds (24-bit 12.5kS/s) and a serial module. The modules may be changed upon request. The cRIO systems are planned to be arranged on 9-10 locations in the tunnel, including center/end rooms.

2nd phase (after iKAGRA in operation) iKAGRA-DAQ acquires EM signals, which are divided from the sensors, in parallel with EM-DAQ.

Φ400-mm vacuum tubes are in production

A first bunch of tubes were delivered at Kamioka on 20 Jan., 2012, and were stored in the tunnel.

Milestones (Geophysics interferometer)

2012.3 vacuum pipes delivery optics final design FM sensor determination 2012.9 vacuum valves / pumps delivery infra specification (clean booth, LAN) 2013.3 optical components delivery vacuum components delivery EM sensors delivery (2014.3) tunnel excavated 2014.6 vacuum & granite base installation 2014.12 vacuum installation 2015.3 optics installation **EM-DAQ** operation 2015.6 test observation start safety management 2015.9 observation & maintenance (2018.3) bKAGRA

related sub-groups Vacuum Tunnel Det Char Vacuum Fac. Sup. Vacuum Det Char Tunnel Vacuum/ Fac. Sup. Vacuum Det Char

Fac. Sup.