

Injection-locked

干涉計 再検討事項

Two nearby interferometers As independent as possible Center rooms: separated 3km vacuum tube: common

Single interferometer New IFO layout

Main interferometer

Baseline Length : 3km Broad band RSE

with power recycling Arm cavity Finesse : 1550 Power Recycling Gain : 11 Signal band Gain : 15 Stored Power : 771kW Signal band : 230Hz Baseline Length : 2.7km Parameter optimization Observable range

Interferometer layout

Optical readout noise

LCGT sensitivity : Mostly limited by quantum noises (Radiation pressure noise and Shot noise)

> Design the interferometer optical parameters

Optical parameter selection

(Previous design)

Optical parameter selection

[Hz]

Signal bandwidth

Baseline length → 2.7km

Optimize for 1.4*M*_{solar} NS inspiral Realistic parameters

Calculate observable range as a function of Light power in cavities Signal bandwidth

Arm cavity Finesse :1550Power Recycling Gain :11Signal Band Gain :11Stored Power :771kWSignal band :195Hz

Observable range [Mpc] 10^{3} 15 100 150 50 150 15 100 175 ()FPMI (without PR, RSE) REPMI (maximum PRG) 175 10² 50 725 150 125 0 2488 10 10⁴ 10⁶ 10^{5} Power on end mirrors [W] SNR = 10

(New design)

(10% reduction, → event rate ~25% reduction)

Observable range : 167Mpc

Single interferometer Optimal direction and polarization

Sensitivity Curve

Almost no difference at a glance

3.95 x10⁻²⁴ Hz^{-1/2} → 4.58x10⁻²⁴ Hz^{-1/2}

感度向上の可能性

ハイパワー化

レーザー光源 (出力 150W) 入出射光学系 (透過率 50%) 鏡の品質 (光損失 10ppm) パワーリサイクリング (ゲイン 11)

→ パワー 2倍

狭帯域化

Detuned RSE

スクイージング ダークポートからの入射 ~10dB?

鏡の大型化 現状: 直径 25cm, 厚さ 15cm, 30kg → 直径 30cm, 42kg 7%程度のレンジ向上 (ただし鏡冷却 →FM透過 3kWが限界 現状 0.39kW)

20%程度のレンジ向上 (70-80%程度のイベントレート向上) が期待できる

70%程度のレンジ向上 (5倍程度のイベントレート向上) が期待できる

13%程度のレンジ向上 (40%程度のイベントレート向上) が期待できる

njection-locked

philesiness from the second philesiness from a major ways the second

感度向上の可能性

CONTRACTOR DISAMON DE LOS

	Obs. range [Mpc]	Range gain	Rate ratio	
Original design Baseline 3km	185 (103)	10%	1.33	
Current design Baseline 2.7km	167 (93)	10 m Notic Conter	USS amily alternative alternative control co	
High Laser Power Power in arm x2	179 (100)	7%	1.23	
Narrow band Detuned RSE	200 (112)	20%	1.72	
Squeezing Shot noise -10dB	284 (159)	70%	4.92	
Heavy mirror 30kg → 42kg	190 (106)	13%	1.47	
Adv. LIGO	320 (180)	92%	7.03	
Adv. VIRGO	215 (120)	29%	2.13	
Narrow band Detuned RSE Squeezing Shot noise -10dB Heavy mirror 30kg → 42kg Adv. LIGO Adv. VIRGO	200 (112) 284 (159) 190 (106) 320 (180) 215 (120)	20% 70% 13% 92% 29%	1.72 4.92 1.47 7.03 2.13	

基線長が 3km → 2.7kmに短縮されたことにより 観測レンジは 184Mpc → 167Mpc に低下する イベント数は 約3/4になる

まとめ

提言: LCGT もしくは Ad. LCGT として、 感度向上の方策を持っているべき

njection-locked 10 Wildsor

LCGT Design Review (July 06, 2008, the University of Tokyo)

11

Broadband - Narrowband

Comparison of detectors

Comparison of next generation GW detectors

Better seismic attenuation system Underground site

Low-mechanical-loss mirrors and suspensions Cryogenic (20k)

High-power laser source Low-loss optics Broad-band RSE config. Scale

Seismic noise reduction

Thermal noise reduction

Quantum noise reduction

Advanced LIGO (USA)

3 detectors (4km) (2 nearby, 1 separated)

Long baseline Better seismic attenuation system Suburban site

Low-mechanical-loss mirrors and suspensions Flat-top beam

High-power laser source Low-loss optics Detuned RSE config.

LCGT optical configuration

Resonant-sideband extraction with power recycling

High-finesse arm cavities PRM between BS and laser source SEM at the detection port

Power recycling PRM+FM → Increase effective finesse → Increase power in cavities by Power-recycling gain (PRG) Resonant-sideband extraction SEM+FM

- → Decrease
 - effective finesse for signals
- → Increase signal band by Signal-band gain (SBG)

Injection-locked

Interferometer overview

(Previous design)

Two nearby interferometers

As independent as possible Center rooms: separated 3km vacuum tube: common

Main interferometer

Broad band RSE with power recycling Arm cavity Finesse : 1550 Power Recycling Gain : 11 Signal band Gain : 15 Stored Power : 771kW Signal band : 230Hz

Input optics

Two mode cleaners Baseline lengths : 10m and 180m Modulators for IFO control Laser stabilization

Output optics

Output mode cleaner Round trip length : 70mm Multiple InGaAs photo diodes

Observation system

Monitor and organize the whole detector system Automatic lock-acquisition Automatic interferometer adjustment Monitor and diagnosis

LCGT interferometer

Main IFO : 3km IFO Input optics : Two MCs, Modulators, MMT Output optics: OMC, Photo detectors

EM2

Main interferometer (2)

Interferometer optical configuration

Ideally, possible to realize same power and signal BW with any config. Power : cavity finesse, PRM Signal BW : cavity finesse, SRM

Realistic constraint

Loss in optics and interference Simplicity of control system Thermal problem in optics

Main interferometer (4)

Merit of RSE

High-finesse cavity and moderate PRG

Easier to realize high power in cavities Smaller transmission light in optics

Flexible optimization for GW sources

Independent adjustment of power in cavities and signal band Narrow-band observation (optional)

Main reason for LCGT

Absorption in sapphire substrates

Heat absorption : 20ppm/cm x 15 cm = 300 ppm Cooling power : 1W for each mirror

Laser power on BS should be less than ~1kW (safety factor 3)

Main parameters

Detector parameters

Laser

Nd:YAG laser (1064nm) Injection lock + MOPA Power : 150 W

Main Interferometer

Broad band RSE configurationBaseline length :3kmBeam Radius :3-5cmArm cavity Finesse :1550Power Recycling Gain :11Signal Band Gain :15Stored Power :771kWSignal band :230Hz

Vacuum system

Beam duct diameter : 100cm Pressure : 10⁻⁹ Torr

Mirror

Sapphire substrate
+ mirror coatingDiameter :25cmThickness :15cmMass :30 kgAbsorption Loss :20ppm/cmTemperature :20 KQ = 10^8 Loss of coating : 10^{-4}

Final Suspension

Suspension + heat link with 4 Sapphire fibers Suspension length : 40cm Fiber diameter : 1.5mm Temperature : 16K Q of final suspension : 10⁸