Modulation Frequency

f1 Candidates: $9 \mathrm{MHz}, 11.25 \mathrm{MHz}, 16.875 \mathrm{MHz}$

	9 MHz	11.25 MHz	16.875 MHz
Lprc	74.95 m	73.28 m	66.62 m
Lsrc	74.95 m	73.28 m	66.62 m
Las	6.66 m	3.33 m	3.33 m
Lmc	33.3 m	26.65 m	26.65 m
f3	$13.5 \mathrm{MHz}(f 2 * 3 / 10)$	$61.9 \mathrm{MHz}\left(f 2^{*} 11 / 8\right)$	$56.3 \mathrm{MHz}\left(f 2^{*} 10 / 8\right)$
DDM freq.	$22.5 \mathrm{MHz}, 31.5 \mathrm{MHz}$	$16.9 \mathrm{MHz}, 50.6 \mathrm{MHz}$	$11.25 \mathrm{MHz}, 39.4 \mathrm{MHz}$

Pros and Cons

- Loop noise $11.25 \mathrm{MHz}<16.875 \mathrm{MHz}<9 \mathrm{MHz}$ (worse < better)
- 9 MHz needs a bit longer MC (33m not 27m)
- 9 MHz has a longer asymmetry (6.6 m compared to 3.3 m)
- 11.25 MHz is incompatible with $3^{\text {rd }}$ harmonics demodulation
- 9 MHz and 16.875 MHz have larger SRCL non-linearity

$3^{\text {rd }}$ Harmonics Demodulation

- Beat between 2*f1 and f1
- Useful for lock acquisition.
- Substitutes for NRS. No MZ, no AM necessary -> simple.

Unfortunately, all the f1 candidates cannot use this method in the usual sense, because 2*f1 resonates in the PRC-SRC.
(f1 frequencies tested: $9 \mathrm{MHz}, 11.25 \mathrm{MHz}, 13.5 \mathrm{MHz}, 16.875 \mathrm{MHz}, 19.3 \mathrm{MHz}$)
Actually, $3^{\text {rd }}$ harmonics demodulation produces some signal due to difference in the response of 2*f1 and f1.
However, strong interference from the carrier is present (carrier-3^f1 beat).

$3^{\text {rd }}$ Harmonics signal during lock acquisition

CARM offset: 2nm -> 0
16.875 MHz

SRC Sweep

$3^{\text {rd }}$ Harmonics signal during lock acquisition

CARM offset: 2nm -> 0

9MHz

SRC Sweep

$$
\mathrm{f} 1=11.25 \mathrm{MHz}
$$

$\mathrm{f} 1=9 \mathrm{MHz}$

$\mathrm{f} 1=16.875 \mathrm{MHz}$

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q PRCL: POP 21 SRCL: POP 11

BRSE: $\mathrm{f} 1=11.25 \mathrm{MHz}$, Feed forward gain=100

Shot Noise Coupling with Feed Forward

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q PRCL: POP 21 SRCL: POP 11

BRSE: f1=9MHz, Feed forward gain=100

Shot Noise Coupling with Feed Forward

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q PRCL: POP 21 SRCL: POP 11

BRSE: $f 1=16.875 \mathrm{MHz}$, Feed forward gain=100

Shot Noise Coupling with Feed Forward

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q PRCL: POP 21 SRCL: POP 11

DRSE: $\mathrm{f} 1=11.25 \mathrm{MHz}$, Feed forward gain=100

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q
PRCL: POP 21
SRCL: POP 11

DRSE: $f 1=9 \mathrm{MHz}$, Feed forward gain=100

DARM: ASDC CARM: REFL 11 MICH: REFL 1Q PRCL: POP 21 SRCL: POP 11

DRSE: $\mathrm{f} 1=16.875 \mathrm{MHz}$, Feed forward gain=100

Shot Noise Coupling with Feed Forward

